Генетика и селекция на устойчивостьтритикале к возбудителю стеблевой ржавчины Puccinia graminis Pers.: обзор литературы

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Стеблевая ржавчина, вызываемая грибом Puccinia graminis f. sp. tritici (Pgt), остается одной из наиболее опасных болезней зерновых культур. В настоящем обзоре представлен анализ эволюции взаимоотношений между тритикале (×Triticosecale Wittmack) и Pgt с момента начала коммерческого культивирования этой культуры, охватывающий исторические аспекты распространения патогена, изменения его вирулентности и адаптации к различным генотипам тритикале, а также меры, предпринимаемые селекционерами для повышения устойчивости культуры к заболеванию. Описаны региональные особенности распространения патогена в России и в мировых центрах выращивания тритикале и пшеницы. Особое внимание уделяется особенностям патологического процесса развития стеблевой ржавчины на тритикале, который, как и у пшеницы, включает стадии прорастания спор, проникновения в ткани растения и формирования уредиопустул. Отмечается, что тритикале, являясь гибридом пшеницы и ржи, подвержена поражению как пшеничной, так и ржаной формами стеблевой ржавчины. Обзор также охватывает современные методы изучения устойчивости тритикале к Pgt, включая использование молекулярных маркеров для идентификации генов резистентности и скрининга селекционного материала. Для тритикале описан ряд генов устойчивости к стеблевой ржавчине, таких как Sr27, Sr31, SrNin, SrSatu, SrBj и SrVen, которые могут быть эффективно использованы в селекционных программах, направленных на создание сортов с долговременной и эффективной устойчивостью к стеблевой ржавчине.

Полный текст

Доступ закрыт

Об авторах

Ксения Юрьевна Дудникова

Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии; Федеральный научный центр биологической защиты растений

Автор, ответственный за переписку.
Email: saenkok1997@yandex.ru
ORCID iD: 0000-0002-3947-0726
SPIN-код: 8655-3066
Россия, 127550, Москва, Тимирязевская, 42; 350039, Краснодарский край, Краснодар, ул. им. Калинина, д. 62

Ольга Александровна Баранова

Всероссийский научно-исследовательский институт защиты растений

Email: baranova_oa@mail.ru
ORCID iD: 0000-0001-9439-2102
SPIN-код: 4868-9416
Scopus Author ID: 56989102900

кандидат биологических наук

Россия, Санкт-Петербург

Александр Александрович Соловьев

Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии; Всероссийский центр карантина растений; Главный ботанический сад им. Н.В. Цицина Российской академии наук

Email: a.soloviev70@gmail.com
ORCID iD: 0000-0003-4480-8776
SPIN-код: 3431-5168
Scopus Author ID: 35732425900
ResearcherId: Q-1589-2015

доктор биологических наук

Россия, 127550, Москва, Тимирязевская, 42; Быково; Москва

Андрей Станиславович Шингалиев

Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии

Email: kronstein491@yandex.ru
ORCID iD: 0009-0002-1488-2721
Россия, 127550, Москва, Тимирязевская, 42

Ольга Александровна Щуклина

Главный ботанический сад им. Н.В. Цицина Российской академии наук

Email: oashuklina@gmail.com
ORCID iD: 0000-0002-3775-6077
SPIN-код: 2110-4103
Scopus Author ID: 57223103933

кандидат сельскохозяйственных наук

Россия, Москва

Максим Васильевич Дудников

Всероссийский научно-исследовательский институт сельскохозяйственной биотехнологии

Email: max.dudnikov.07@gmail.com
ORCID iD: 0000-0002-0755-0801
SPIN-код: 7717-1118
Scopus Author ID: 55390914800
ResearcherId: AAE-9434-2020

кандидат биологических наук

Россия, 127550, Москва, Тимирязевская, 42

Список литературы

  1. Koyshybaev M, Muminjanov H. Methodological guidelines for monitoring of diseases, pests and weeds in grain crops. Ankara: Food and Agriculture Organization of the United Nations; 2016. 28 p. (In Russ.)
  2. Vavilov NI. Plant immunity to infectious diseases. Moscow: Nauka; 1986. 239 p. (In Russ.)
  3. Levitin MM, Fedorova IV. Genetics of phytopathogenic fungi. Saint Petersburg: Nauka; 1972. 245 p. (In Russ.)
  4. Kazi AG, Rasheed A, Mujeeb-Kazi A. Biotic stress and crop improvement: a wheat focus around novel strategies. In: Hakeem K, Ahmad P, Ozturk M, editors. Crop improvement: new approaches and modern techniques. Boston: Springer; 2013. P. 239–267. doi: 10.1007/978-1-4614-7028-1_7
  5. Mergoum M, Singh PK, Peña RJ, et al. Triticale: A “New” crop with old challenges. In: Carena M, editor. Cereals. Handbook of plant breeding. Vol. 3. New York: Springer; 2009. P. 267–287. doi: 10.1007/978-0-387-72297-9_9
  6. Pylnev BB, Konovalov YB, Khupatsaria TI, Buko OA, editors. Private selection of field crops: textbook. Saint Petersburg: Lan; 2022. 544 p. (In Russ.)
  7. Müntzing A. Cytogenetic and breeding studies in Triticale. Hereditas. 1966;2:291–300.
  8. Oettler G. The fortune of a botanical curiosity — Triticale: past, present and future. J Agric Sci. 2005;143(5):329–346.doi: 10.1017/s0021859605005290
  9. Lanjouw J. International code of botanical nomenclature. In: 7th international botanical congress; July 1950; Stockholm. Utrecht: International Bureau for Plant Taxonomy and Nomenclature of the International Association for Plant Taxonomy; 1952.
  10. Meinel A, Franke R. Entstehung, Geschichte und aktuelle Bedeutung des ersten fertilen allopolyploiden Weizen-Roggen-Bastards: des Triticale vonW. Rimpau. Archiv fuer Zuechtungsforschung. 1988;18.
  11. Kwiatek MT, Nawracała J. Chromosome manipulations for progress of triticale (×Triticosecale) breeding. Plant Breed. 2018;137(6):823–831. doi: 10.1111/pbr.12652
  12. Hammer K, Filatenko AA, Pistrick K. Taxonomic remarks on Triticum L. and ×Triticosecale Wittm. Genet Resour Crop Evol. 2010;58(1):3–10. doi: 10.1007/s10722-010-9590-4
  13. Arseniuk E, Góral T. Triticale biotic stresses — known and novel foes. In: Eudes F, editor. Triticale. Cham: Springer; 2015. P. 83–108.doi: 10.1007/978-3-319-22551-7_5
  14. Singh RP, Saari EE. Biotic stress in triticale. Proceedings of the 2nd international triticale symposium; 1990 Oct; Passo Fundo.P. 171–181.
  15. Prokhorova SV, Tereshchuk VS, Nemkovich AI. Phytosanitary condition of triticale crops. Proceedings of the Academy of Agrarian Sciences of the Republic of Belarus. 2000;(2):51–56.
  16. Olivera PD, Pretorius ZA, Badebo A, Jin Y. Identification of resistance to races of Puccinia graminis f. sp. tritici with broad virulence in triticale (×Triticosecale). Plant Dis. 2013;97(4):479–484. doi: 10.1094/pdis-05-12-0459-re
  17. Audenaert K, Troch V, Landschoot S, Haesaert G. Biotic stresses in the anthropogenic hybrid triticale (×Triticosecale Wittmack): current knowledge and breeding challenges. Eur J Plant Pathol. 2014;140(4):615–630. doi: 10.1007/s10658-014-0498-2
  18. Patpour M, Hovmøller MS, Rodriguez-Algaba J, et al. Wheat stem rust back in Europe: diversity, prevalence and impact on host resistance.Front Plant Sci. 2022;13:882440. doi: 10.3389/fpls.2022.882440
  19. Peresypkin VF. Agricultural phytopathology. 4th ed. Moscow:Agropromizdat; 1989. 480 p. (In Russ.)
  20. Stancheva J. Atlas of diseases of agricultural crops. Part 3. Diseases of field crops. Vasyutin AS, Shirina LV, Kulich OA, editors. Translate Danilova G. Bulgaria: Pensoft; 2003. 175 p. (In Russ.)
  21. Ulyanischev VI. Determinator of rust fungi of the USSR. Part 2. Leningrad: Nauka; 1978. 384 p. (In Russ.)
  22. Dobrozrakova TL. Agricultural phytopathology. 2nd ed. Khokhryakov MK, editor. Leningrad: Kolos; 1974. 382 p. (In Russ.)
  23. Roelfs AP. Wheat and rye stem rust. In: Roelfs AP, Bushnell WR, editors. Diseases, distribution, epidemiology, and control. Orlando: Academic Press; 1985. P. 3–37. doi: 10.1016/b978-0-12-148402-6.50009-2
  24. Jin Y, Szabo LJ, Pretorius ZA, et al. Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. Tritici. Plant Dis. 2008;92(6):923–926. doi: 10.1094/pdis-92-6-0923
  25. Johnson T, Newton M, Brown AM. Hybridization of Puccinia graminis tritici with Puccinia graminis secalis and Puccinia graminis agrostidis.Sci Agric. 1932;13(3):141–153.
  26. Singh RP, Hodson DP, Huerta-Espino J, et al. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol. 2011;49:465–481. doi: 10.1146/annurev-phyto-072910-095423
  27. Martis MM, Zhou R, Haseneyer G, et al. Reticulate evolution of the rye genome. Plant Cell. 2013;25(10):3685–3698. doi: 10.1105/tpc.113.114553
  28. Allen RF. A cytological study of Pucoinia glnmarum on Bromus marginatus and Triticum vulgare. CABI Databases; 1928. P. 487–513.
  29. Heath MC. Light and electron microscope studies of the interactions of host and non-host plants with cowpea rust — Uromyces phaseoli var. vignae. Physiol Plant Pathol. 1974;4(4):403–414. doi: 10.1016/0048-4059(74)90025-3
  30. Harder DE, Rohringer R, Samborski DJ, et al. Electron microscopy of susceptible and resistant near-isogenic (sr6/Sr6) lines of wheat infected by Puccinia graminis tritici. I. The host–pathogen interface in the compatible (Sr6/P6) interaction. Can J Bot. 1978;56(23):2955–2966. doi: 10.1139/b78-358
  31. Staples RC, Hoch HC, Epstein L, et al. Recognition of host morphology by rust fungi: responses and mechanisms. Can J Plant Pathol. 1985;7(3):314–322. doi: 10.1080/07060668509501698
  32. Niks RE. Early abortion of colonies of leaf rust, Puccinia hordei, in partially resistant barley seedlings. Can J Bot. 1982;60(5):714–723.doi: 10.1139/b82-093
  33. Niks RE. Haustorium formation by Puccinia hordei in leaves of hypersensitive, partially resistant, and nonhost plant genotypes. Phytopathology. 1983;73(1):64–66. doi: 10.1094/Phyto-73-64
  34. Jacobs T. Germination and appressorium formation of wheat leaf rust on susceptible, partially resistant and resistant wheat seedlings and on seedlings of other Gramineae. Neth J Plant Pathol. 1989;95:65–71.doi: 10.1007/BF01997473
  35. Leonard KJ, Szabo LJ. Stem rust of small grains and grasses caused by Puccinia graminis. Mol Plant Pathol. 2005;6(2):99–111.doi: 10.1111/j.1364-3703.2005.00273.x
  36. Pardey PG, Beddow JM, Kriticos DJ, et al. Right-sizing stem-rust research. Science. 2013;340(6129):147–148. doi: 10.1126/science.122970
  37. Del Pozo A, Méndez-Espinoza AM, Castillo D. Triticale. In: Farooq M, Siddique KHM, editors. Neglected and underutilized crops. Academic Press; 2023. P. 352–362. doi: 10.1016/b978-0-323-90537-4.00029-6
  38. Hei N, Shimelis HA, Laing M. Appraisal of farmers wheat production constraints and breeding priorities in rust prone agro-ecologies of Ethiopia. Afr J Agric Res. 2017;12(12):944–952. doi: 10.5897/ajar2016.11518
  39. Bender CM, Boshoff WHP, Pretorius ZA. Infection and colonization of triticale by Puccinia graminis f. sp. Tritici. Can J Plant Pathol. 2021;43(S2):198–210. doi: 10.1080/07060661.2021.1931453
  40. Lapochkina IF, Baranova OA, Shamanin VP, et al. The development of initial material of spring common wheat for breeding for resistance to stem rust (Puccinia graminis Pers. f. sp. tritici), uncluding race Ug99, in Russia. Vavilov Journal of Genetics and Breeding. 2016;20(3):320–328.doi: 10.18699/VJ16.167 EDN: WLVKEV
  41. Shamanin VP, Pototskaya IV, Shepelev SS, et al. Stem rust in Western Siberia–race composition and effective resistance genes. Vavilov Journal of Genetics and Breeding. 2020;24(2):131. doi: 10.18699/VJ20.608
  42. Volkova GV, Sinyak EV. Wheat stem rust. Plant protection and quarantine. 2011;(11):14–16. EDN: MXEPFA
  43. Shamanin VP, Morgunov AI, Petukhovsky SL, et al. Selection of spring soft wheat for resistance to stem rust in Western Siberia. Editorial Board; 2015. 287 p. (In Russ.)
  44. Markelova TS. Phytosanitary situation in the agrocoenosis of grain crops in the Volga region. Plant protection and quarantine. 2015;(5):22–23.EDN: TRKKFD
  45. Volkova GV, Kudinova OA, Miroshnichenko OO. Stem rust as a particularly dangerous disease of wheat. Achievements of science and technology in agro-industrial complex. 2020;34(1):20–25. doi: 10.24411/0235-2451-2020-10104EDN: UFGDNQ
  46. Roelfs AP, Singh RP, Saari EE. Rust diseases of wheat: conceptsand methods of disease management. Mexico: CIMMYT; 1992. 81 p.
  47. Zadoks C. Epidemiology of wheat rusts in Europe. Plant ProtectionBulletin, F.A.O. 1965;13(5):97–108.
  48. Zadoks JC, Bouwman JJ. Epidemiology in Europe. In: Roelfs AP,Bushnell WR, editors. The cereal rusts. Vol. II: Distribution, epidemiology and control. Orlando: Academic Press; 1985. P. 329–369.doi: 10.1016/b978-0-12-148402-6.50019-5
  49. Hermansen JE. Studies on the survival and spread of cereal rust and mildew diseases in Denmark. Friesia. 1968;8(3):5–206.
  50. Olivera P, Newcomb M, Szabo LJ, et al. Phenotypic and genotypic characterization of race TKTTF of Puccinia graminis f. sp. tritici that caused a wheat stem rust epidemic in Southern Ethiopia in 2013–14. Phytopathology. 2015;105(7):917–928. doi: 10.1094/phyto-11-14-0302-fi
  51. Lewis CM, Persoons A, Bebber DP, et al. Potential for re-emergence of wheat stem rust in the United Kingdom. Commun Biol. 2018;1(1):13. doi: 10.1038/s42003-018-0013-y
  52. Bhattacharya S. Deadly new wheat disease threatens Europe’s crops. Nature. 2017;542(7640):145–146. doi: 10.1038/nature.2017.21424
  53. Zamorski C, Schollenberger M, Nowicki B. The role of triticale as the host of wheat and rye pathogens. Genet Pol. 1994;35:143–155.
  54. Skowrońska R, Tomkowiak A, Nawracała J, Kwiatek MT. Molecular identification of slow rusting resistance Lr46/Yr29 gene locus in selected triticale (×Triticosecale Wittmack) cultivars. J Appl Genet. 2020;61(3):359–366. doi: 10.1007/s13353-020-00562-8
  55. Kjellström C. Population structure of Puccinia graminis, the cause of stem rust on wheat, barley, and rye in Sweden. Uppsala: Dept. of Forest Mycology and Plant Pathology; 2021. 41 p.
  56. Berlin A, Djurle A, Samils B, Yuen J. Genetic variation in Puccinia graminis collected from oats, rye, and barberry. Phytopathology. 2012;102(10):1006–1012. doi: 10.1094/phyto-03-12-0041-r
  57. Olivera PD, Villegas D, Cantero-Martínez C, et al. A unique race of the wheat stem rust pathogen with virulence on Sr31 identified in Spain and reaction of wheat and durum cultivars to this race. Plant Pathol. 2022;71(4):873–889. doi: 10.1111/ppa.13530
  58. Singh RP, Hodson DP, Jin Y, et al. Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CABI Rev. 2006;1:1–13. doi: 10.1079/PAVSNNR20061054
  59. Singh RP, Hodson DP, Huerta-Espino J, et al. Will stem rust destroy the world’s wheat crop? Adv Agron. 2008;98:271–309. doi: 10.1016/s0065-2113(08)00205-8
  60. Gross M. Pests on the move. Curr Biol. 2013;23(19):855–857. doi: 10.1016/j.cub.2013.09.034
  61. Bhavani S, Hodson DP, Huerta-Espino J, et al. Progress in breeding for resistance to Ug99 and other races of the stem rust fungus in CIMMYT wheat germplasm. Front Agr Sci Eng. 2019;6(3):210–224.doi: 10.15302/j-fase-2019268
  62. Terefe TG, Boshoff WHP, Park RF, et al. Wheat stem rust surveillance reveals two new races of Puccinia graminis f. sp. tritici in South Africa during 2016 to 2020. Plant Dis. 2024;108(1):20–29. doi: 10.1094/pdis-06-23-1120-sr
  63. Figlan S, Le Roux C, Terefe T, et al. Wheat stem rust in South Africa: Current status and future research directions. Afr J Biotechnol. 2014;13(44):4188–4199. doi: 10.5897/AJB2014.14100
  64. Rsaliyev AS, Rsaliyev ShS. Principal approaches and achievements in studying race composition of wheat stem rust. Vavilov Journal of Genetics and Breeding. 2019;22(8):967–977. doi: 10.18699/VJ18.439EDN: YQNNRJ
  65. Park RF. Stem rust of wheat in Australia. Aust J Agric Res. 2007;58(6):558–566. doi: 10.1071/ar07117
  66. Upadhyaya NM, Garnica DP, Karaoglu H, et al. Comparative genomics of Australian isolates of the wheat stem rust pathogen Puccinia graminis f. sp. tritici reveals extensive polymorphism in candidate effector genes. Front Plant Sci. 2015;5:759. doi: 10.3389/fpls.2014.00759
  67. Park RF. Long term surveys of pathogen populations underpin sustained control of the rust diseases of wheat in Australia. J Proc R Soc NSW. 2015;148(1):15–27. doi: 10.5962/p.361725
  68. McIntosh RA, Wellings CR, Park RF. The genes for resistance to stem rust in wheat and triticale. In: McIntosh RA, Wellings CR, Park RF. Wheat Rusts: An atlas of resistance genes. Melbourne: CSIRO; 1995. P. 83–146. doi: 10.1007/978-94-011-0083-0_3
  69. Terefe T, Pretorius ZA, Paul I, et al. Occurrence and pathogenicity of Puccinia graminis f. sp. tritici on wheat in South Africa during 2007 and 2008.S Afr J Plant Soil. 2010;27(2):163–167. doi: 10.1080/2167034X.2010.12461331
  70. Luig N, Watson I. The role of wild and cultivated grasses in the hybridization of formae speciales of Puccinia graminis. Aust J Biol Sci. 1972;25(2):335–342. doi: 10.1071/bi9720335
  71. Roelfs AP. Epidemiology in North America. In: Roelfs AP, Bushnell WR.The cereal rusts Vol. II. Diseases, distribution, epidemiology, and control. Orlando: Academic Press; 1985. P. 403–434. doi: 10.1016/b978-0-12-148402-6.50021-3
  72. Saari EE, Prescott JM. World distribution in relation to economic losses. In: Roelfs AP, Bushnell WR. The cereal rusts Vol. II. Diseases, distribution, epidemiology, and control. Orlando: Academic Press; 1985. P. 259–298. doi: 10.1016/b978-0-12-148402-6.50017-1
  73. Menzies JG, Fetch T, Zegeye T. Virulence phenotypes of Puccinia graminis on barley, wheat and oat in Canada from 2020 to 2022. Can J Plant Pathol. 2024;46(5):494–500. doi: 10.1080/07060661.2024.2345350
  74. Solodukhina OV, Kobylyansky VD. Problems of winter rye breeding for resistance to brown and stem rusts. In: Proceedings of EUCARPIA rye meeting. 2001. P. 4–7.
  75. Boshoff WHP. Reaction of South African rye, triticale and barley forage cultivars to stem and leaf rust. S Afr J Plant Soil. 2019;36(2):77–82.doi: 10.1080/02571862.2018.1522381
  76. Gruner P, Schmitt A-K, Flath K, et al. Mapping Stem Rust (Puccinia graminis f. sp. secalis) resistance in self-fertile winter rye populations. Front Plant Sci. 2020;11:667. doi: 10.3389/fpls.2020.00667
  77. Ishkova TI, Berestetskaya LI, Gasich EL, et al. Diagnosis of major fungal diseases of bread cereals. 3rd edit. and rev. Saint Petersburg: All-Russian Research Institute of Plant Protection; Russian Academy of AgriculturalSciences; 2008. 76 p. EDN: UBCJJN (In Russ.)
  78. Borlaug N. An assessment of race Ug99 in Kenya and Ethiopia and the potential for impact in neighboring regions and beyond.In: Sounding the alarm on global stem rust. 2005. 30 p.
  79. Góral H, Stojałowski S, Warzecha T, Larsen J. The development of hybrid triticale. In: Eudes F, editor. Triticale. Cham: Springer; 2015. P. 33–66. doi: 10.1007/978-3-319-22551-7_3
  80. Randhawa HS, Bona L, Graf RJ. Triticale breeding — progress and prospect. In: Eudes F, editor. Triticale. Cham: Springer; 2015. P. 15–32. doi: 10.1007/978-3-319-22551-7_2
  81. Skowrońska R, Mariańska M, Ulaszewski W, et al. Development of triticale × wheat prebreeding germplasm with loci for slow-rusting resistance. Front Plant Sci. 2020;11:447. doi: 10.3389/fpls.2020.00447
  82. McIntosh RA, Dubcovsky J, Rogers W, et al. Catalogue of gene symbols for wheat: 2015–2016 supplement. Ann Wheat Newsl. 2016;58:1–18.
  83. McIntosh RA, Luig NH, Milne DL, Cusick J. Vulnerability of triticales to wheat stem rust. Can J Plant Pathol. 1983;5(2):61–69. doi: 10.1080/07060668309501629
  84. Singh SJ, McIntosh RA. Allelism of two genes for stem rust resistance in triticale. Euphytica. 1988;38:185–189. doi: 10.1007/bf00040190
  85. Adhikari KN, McIntosh RA. Inheritance of wheat stem rust resistance in triticale. Plant Breed. 1998;117(6):505–513. doi: 10.1111/j.1439-0523.1998.tb02199.x
  86. Zhang J, Wellings CR, McIntosh RA, Park RF. Seedling resistances to rust diseases in international triticale germplasm. Crop Pasture Sci. 2010;61(12):1036–1048. doi: 10.1071/CP10252
  87. Zhang W, Chen S, Abate Z, et al. Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. PNAS USA. 2017;114(45):9483–9492.doi: 10.1073/pnas.1706277114
  88. Chen S, Rouse MN, Zhang W, et al. Fine mapping and characterization of Sr21, a temperature-sensitive diploid wheat resistance gene effective against the Puccinia graminis f. sp. tritici Ug99 race group. Theor Appl Genet. 2015;128(4):645–656. doi: 10.1007/s00122-015-2460-x
  89. Savin T, Zotova L, Zhumalin A, et al. Effectiveness of the influence ofSr and Lr genes on the field resistance of wheat to stem and leaf rust.Casp J Environ Sci. 2024;22(1):43–51. doi: 10.22124/cjes.2024.7481
  90. Spetsov P, Daskalova N. Resistance to pathogens in wheat-rye and triticale genetic stocks. J Plant Pathol. 2022;104(1):99–114.doi: 10.1007/s42161-021-01019-5
  91. Marais GF. An evaluation of three Sr27-carrying wheat × rye translocations. S Afr J Plant Soil. 2001;18(3):135–136. doi: 10.1080/02571862.2001.10634417
  92. Mago R, Spielmeyer W, Lawrence G, et al. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor Appl Genet. 2002;104(8):1317–1324. doi: 10.1007/s00122-002-0879-3
  93. Baranova OA, Lapochkina IF, Anisimova AV, et al. Identification ofSr genes in new common wheat sources of resistance to stem rust race Ug99 using molecular markers. Vavilov Journal of Genetics and Breeding. 2015;19(3):316–322. doi: 10.18699/vj15.041 EDN: UFFNSX
  94. Baranova O, Solyanikova V, Kyrova E, et al. Evaluation of resistance to stem rust and identification of Sr genes in Russian spring and winter wheat cultivars in the Volga region. Agriculture. 2023;13(3):635.doi: 10.3390/agriculture13030635
  95. Jin Y, Pretorius ZA, Singh RP. New virulence within race TTKS (Ug99) of the stem rust pathogen and effective resistance genes. Phytopathology. 2007;97(7):137.
  96. Olivera PD, Sikharulidze Z, Dumbadze R, et al. Presence of a sexual population of Puccinia graminis f. sp. tritici in Georgia provides a hotspot for genotypic and phenotypic diversity. Phytopathology. 2019;109(12):2152–2160. doi: 10.1094/phyto-06-19-0186-r
  97. McIntosh RA, Wellings CR, Park RF. Wheat rusts: an atlas of resistance genes. CSIRO publishing; 1995. 200 p. doi: 10.1071/9780643101463
  98. Upadhyaya NM, Mago R, Panwar V, et al. Genomics accelerated isolation of a new stem rust avirulence gene — wheat resistance gene pair.Nat Plants. 2021;7(9):1220–1228. doi: 10.1038/s41477-021-00971-5
  99. Aleri I, Owuoche JO, Ojwang PO. Evaluation of triticale (X. Triticosecale Wittmack) genotypes for adult plant resistance to stem rust (Puccinia graminis f. sp. tritici). Afr J Plant Sci. 2019;13(3):70–80. doi: 10.5897/ajps2018.1733
  100. Simons K, Abate Z, Chao S, et al. Genetic mapping of stem rust resistance gene Sr13 in tetraploid wheat (Triticum turgidum ssp. durum L.). Theor Appl Genet. 2010;122(3):649–658. doi: 10.1007/s00122-010-1444-0
  101. The TT, Latter BDH, McIntosh RA, et al. Grain yields of near-isogenic lines with added genes for stem rust resistance. In: Proceedings of the7th international wheat genetics symposium. UK: Cambridge; 1988.P. 901–906.
  102. Brown GN. A seedling marker for gene Sr2 in wheat. In: Proceedings of the 10th Australian plant breeding conference. 1993. P. 139–140. doi: 10.1007/s00122-010-1482-7
  103. Roelfs AP, Casper DH, Long DL, Roberts JJ. Races of Puccinia graminis in the United States in 1989. Plant Dis. 1991;75:1127–1130.doi: 10.1094/PD-75-1127
  104. Harder DE, Dunsmore KM. Incidence and virulence of Puccinia graminis. f. sp. tritici on wheat and barley in Canada in 1991. Can J Plant Pathol. 1993;15(1):37–40. doi: 10.1080/07060669309500848
  105. Nirmala J, Chao S, Olivera P, et al. Markers linked to wheat stem rust resistance gene Sr11 effective to Puccinia graminis f. sp. tritici race TKTTF. Phytopathology. 2016;106(11):1352–1358. doi: 10.1094/phyto-04-16-0165-r
  106. Dolmatovich TV, Buloychik AA. DNA-technology of wheat resistance genes identification to brown rust pathogen. Methodical recommendations. Minsk: Ministry of Agriculture and Food of the Republic of Belarus; National Academy of Sciences of Belarus; Institute of Genetics and Cytology of the National Academy of Sciences of Belarus; 2013. 64 p. (In Russ.)
  107. Olivera PD, Szabo LJ, Kokhmetova A, et al. Puccinia graminis f. sp. tritici population causing recent wheat stem rust epidemics in Kazakhstan is highly diverse and includes novel virulence pathotypes. Phytopathology. 2022;112(11):2403–2415. doi: 10.1094/phyto-08-21-0320-r
  108. Saenko KYu, Dudnikov MV. Genes of susceptibility of cereals to rust diseases (S-genes). In: Zamotailov AS, Volkova GV, editors. Proceedings of the XI international science and practice conferences: «Crop protection against hazardous organisms»; 19–23 Jun 2023; Krasnodar. P. 342–344. EDN: CLUWTY
  109. Saenko KYu, Dudnikov MV. Search for resistance genes identified in wheat in the tritical genome. In: Proceedings of the XXII All-Russian international conference of young scientists in memory of Academician Georgy Sergeevich Muromtsev of the Russian Academy of Agricultural Sciences: “Biotechnology in crop, livestock and agricultural microbiology”; 07–09 Dec 2022; Moscow. Moscow: FGBNU VNIISB; 2022. P. 69–70.doi: 10.48397/ARRIAB.2022.22.XXII.037 EDN: KHJGGY
  110. Tyryshkin LG, Kolesova MA. The use of molecular-genetic and phytopathological methods to identify genes for effective leaf rust resistance in Aegilops accessions. Proceedings on applied botany, genetics and breeding. 2020;181(2):87–95. doi: 10.30901/2227-8834-2020-2-87-95EDN: VFLBLS
  111. Dolmatovich TV, Buloichik AA, Grib SI, et al. Screening of competitive trial accessions of winter and spring triticale for presence of genes of resistance to leaf, stem, and stripe rust of wheat. Arable Farming and Plant Breeding in Belarus. 2016;(52):225–231.
  112. Dolmatovich ТV, Buloichik АА. Analysis of varieties of winter and spring triticale cultivars released in the republic of Belarus for the presence of resistance genes to leaf, stem and yellow rust. Plant protection news. 2016;(3):65–66. EDN: WYRCYZ
  113. Volkova GV, Kudinova OA, Ignatieva OO, et al. Rust resistance of wheat and triticale samples in different plant growing stages. South of Russia: ecology, development. 2023;18(4):161–172. doi: 10.18470/1992-1098-2023-4-161-172EDN: LKUWBE
  114. Yerzhebayeva RS, Abekova AM, Bastaubaeva SO, et al. Identification of the leaf and stem rust resistance genes in breeding lines of triticale. Sakh. Svekla. 2017;8:32–37.
  115. Yerzhebayeva RS, Bazylova TA, Babissekova DI, et al. Studying a spring triticale collection for resistance to leaf and stem rusts using allele-specific markers. Cytol Genet. 2020;54(6):546–554. doi: 10.3103/s0095452720060043
  116. Mago R, Brown-Guedira G, Dreisigacker S, et al. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet. 2010;122(4):735–744. doi: 10.1007/s00122-010-1482-7
  117. Weng Y, Azhaguvel P, Devkota RN, Rudd JC. PCR-based markers for detection of different sources of 1AL.1RS and 1BL.1RS wheat-rye translocations in wheat background. Plant Breed. 2007;126(5):482–486. doi: 10.1111/j.1439-0523.2007.01331.x
  118. Mago R, Zhang P, Vautrin S, et al. The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nat Plants. 2015;1:15186. doi: 10.1038/nplants.2015.186
  119. Stakman EC, Stewart DM, Loegering WQ. Identification of physiologic races of Puccinia graminis var. tritici. Identification of physiologic races of Puccinia graminis var. tritici. Washington: USDA; 1962. 53 p.
  120. Terefe TG, Visser B, Pretorius ZA. Variation in Puccinia graminis f. sp. tritici detected on wheat and triticale in South Africa from 2009 to 2013. Crop Prot. 2016;86:9–16. doi: 10.1016/j.cropro.2016.04.006
  121. Miedaner T, Flath K, Gruner P, et al. Looking ahead: races and resistances to stem rust in European wheat and triticale. In: Proceedings of the 73rd conference of the vereinigung der pflanzenzüchter und saatgutkaufleute österreichs, Raumberg–Gumpenstein; 21–23 Nov 2022; Irdning, Austria; 2022. P. 23–24. doi: 10.5281/zenodo.7875597
  122. Kwiatek MT, Noweiska A, Bobrowska R, et al. Novel Tetraploid triticale (Einkorn wheat × Rye) — A source of stem rust resistance. Plants. 2023;12(2):278. doi: 10.3390/plants12020278

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Первичные тритикале.

Скачать (140KB)
3. Рисунок 2. Производство тритикале в мире и посевные площади в Российской Федерации

Скачать (182KB)
4. Рис. 3. Примеры генов устойчивости к стеблевой ржавчине, характерных для пшеницы, ржи и тритикале.

Скачать (169KB)

© Эко-Вектор, 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.