Whole genome approach in conservation biology and its perspectives

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Conservation biology aims to maintain biological diversity and to defend species from extinction. The number of endangered species is constantly increasing from year to year, reflecting both a deteriorating situation and an increasing number of studied species. In order to obtain a reliable assessment of the status and conservation planning of threatened species, not only an estimate of current total abundance, but also data on population structure, demographic history, and genetic diversity are needed. The development of new approaches and lower costs of sequencing have made it possible to solve these problems at a level previously inaccessible and have led to the formation of conservation genomics. This review discusses the opportunities and prospects offered by the use of whole genome sequencing in conservation biology, features of sample gathering for sequencing, as well as some features of planning whole genome studies. In addition, emphasis is placed on the importance of the formation of open biobanks of samples and cell cultures at the national level.

Full Text

Restricted Access

About the authors

Sergei F. Kliver

Institute for Molecular and Cellular Biology SB RAS

Author for correspondence.
Email: mahajrod@gmail.com
ORCID iD: 0000-0002-2965-3617
SPIN-code: 8635-4259
Scopus Author ID: 56449314300
ResearcherId: E-9613-2015

researcher

Russian Federation, 8/2, Academika Lavrentieva str., Novosibirsk, 630090

References

  1. Soulé ME. What Is Conservation Biology? BioScience. 1985;35(11):727–734. doi: 10.2307/1310054
  2. ucnredlist.org [Internet]. The IUCN Red List of Threatened Species. Version 2020–2. 2020 [cited 2020 Aug 10]. Available from: https://www.iucnredlist.org
  3. Butchart SHM, Akçakaya HR, Chanson J, et al. Improvements to the Red List Index. PLOS ONE. 2007;2(1): e140. doi: 10.1371/journal.pone.0000140
  4. Ceballos G, Ehrlich PR, Raven PH. Vertebrates on the brink as indicators of biological annihilation and the sixth mass extinction. Proc Natl Acad Sci USA. 2020;117(24):13596–13602. doi: 10.1073/pnas.1922686117
  5. Frankham R. Conservation Genetics. Annu Rev Genet. 1995;29(1):305–327. doi: 10.1146/annurev.ge.29.120195.001513
  6. Luikart G, England PR, Tallmon D, et al. The power and promise of population genomics: from genotyping to genome typing. Nat Rev Genet. 2003;4(12):981–994. doi: 10.1038/nrg1226
  7. Miller W, Hayes VM, Ratan A, et al. Genetic diversity and population structure of the endangered marsupial Sarcophilus harrisii (Tasmanian devil). PNAS. 2011;108(30):12348–12353. doi: 10.1073/pnas.1102838108
  8. Waterson RH, Lander ES, Wilson RK, et al. Initial sequence of the chimpanzee genome and comparison with the human genome. Nature. 2005;437(7055):69–87. doi: 10.1038/nature04072
  9. Kirkness EF, Bafna V, Halpern AL, et al. The Dog Genome: Survey Sequencing and Comparative Analysis. Science. 2003;301(5641):1898–903. doi: 10.1126/science.1086432
  10. Zimin AV, Marçais G, Puiu D, et al. The MaSuRCA genome assembler. Bioinformatics. 2013;29(21):2669–2977. doi: 10.1093/bioinformatics/btt476
  11. Li R, Fan W, Tian G, et al. The sequence and de novo assembly of the giant panda genome. Nature. 2010;463(7279):311–317. doi: 10.1038/nature08696
  12. Robinson JA, Räikkönen J, Vucetich LM, et al. Genomic signatures of extensive inbreeding in Isle Royale wolves, a population on the threshold of extinction. Sci Adv. 2019;5(5): eaau0757. doi: 10.1126/sciadv.aau0757
  13. Nuijten RJM, Bosse M, Crooijmans RPMA, et al. The Use of Genomics in Conservation Management of the Endangered Visayan Warty Pig (Sus cebifrons). Int J Genomics. 2016;2016:1–9. doi: 10.1155/2016/5613862
  14. Dobrynin P, Liu S, Tamazian G, et al. Genomic legacy of the African cheetah, Acinonyx jubatus. Genome Biol. 2015;16(1):277. doi: 10.1186/s13059-015-0837-4
  15. Abascal F, Corvelo A, Cruz F, et al. Extreme genomic erosion after recurrent demographic bottlenecks in the highly endangered Iberian lynx. Genome Biol. 2016;17(1):251. doi: 10.1186/s13059-016-1090-1
  16. Beichman AC, Koepfli K-P, Li G, et al. Aquatic Adaptation and Depleted Diversity: A Deep Dive into the Genomes of the Sea Otter and Giant Otter. Kelley J, editor. Mol Biol Evol. 2019; msz101. doi: 10.1093/molbev/msz101
  17. Jones SJ, Haulena M, Taylor GA, et al. The Genome of the Northern Sea Otter (Enhydra lutris kenyoni). Genes. 2017;8(12):379. doi: 10.3390/genes8120379
  18. Kolchanova S, Kliver S, Komissarov A, et al. Genomes of Three Closely Related Caribbean Amazons Provide Insight for Species History and Conservation. Genes. 2019;10(1):54. doi: 10.3390/genes10010054
  19. Feng S, Fang Q, Barnett R, et al. The Genomic Footprints of the Fall and Recovery of the Crested Ibis. Curr Biol. 2019;29(2):340–349.e7. doi: 10.1016/j.cub.2018.12.008
  20. de Manuel M, Barnett R, Sandoval-Velasco M, et al. The evolutionary history of extinct and living lions. Proc Natl Acad Sci USA. 2020;117(20):10927–10934. doi: 10.1073/pnas.1919423117
  21. Humble E, Dobrynin P, Senn H, et al. Chromosomal-level genome assembly of the scimitar-horned oryx: Insights into diversity and demography of a species extinct in the wild. Mol Ecol Resour. 2020;1755–0998.13181. doi: 10.1101/867341
  22. Cortes-Rodriguez N, Campana M, Berry L, et al. Population Genomics and Structure of the Critically Endangered Mariana Crow (Corvus kubaryi). Genes. 2019;10(3):187. doi: 10.3390/genes10030187
  23. Gooley RM, Tamazian G, Castañeda-Rico S, et al. Comparison of genomic diversity and structure of sable antelope (Hippotragus niger) in zoos, conservation centers, and private ranches in North America. Evol Appl. 2020;13(8):2143–2154. doi: 10.1111/eva.12976
  24. Koepfli K-P, Tamazian G, Wildt D, et al. Whole Genome Sequencing and Re-sequencing of the Sable Antelope (Hippotragus niger): A Resource for Monitoring Diversity in ex Situ and in Situ Populations. G3. 2019;9(6):1785–1793. doi: 10.1534/g3.119.400084
  25. Yang J, Wariss HM, Tao L, et al. De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China. Gigascience. 2019;8(7): giz085. doi: 10.1093/gigascience/giz085
  26. Sutton JT, Helmkampf M, Steiner CC, et al. A High-Quality, Long-Read De Novo Genome Assembly to Aid Conservation of Hawaii’s Last Remaining Crow Species. Genes. 2018;9(8):393. doi: 10.3390/genes9080393
  27. van der Valk T, Díez-del-Molino D, Marques-Bonet T, et al. Historical Genomes Reveal the Genomic Consequences of Recent Population Decline in Eastern Gorillas. Curr Biol. 2019;29(1):165–170.e6. doi: 10.1016/j.cub.2018.11.055
  28. Yi L, Dalai M, Su R, et al. Whole-genome sequencing of wild Siberian musk deer (Moschus moschiferus) provides insights into its genetic features. BMC Genomics. 2020;21(1):108. doi: 10.1186/s12864-020-6495-2
  29. Mays HL, Hung C-M, Shaner P-J, et al. Genomic Analysis of Demographic History and Ecological Niche Modeling in the Endangered Sumatran Rhinoceros Dicerorhinus sumatrensis. Curr Biol. 2018;28(1):70–76.e4. doi: 10.1016/j.cub.2017.11.021
  30. Rogers RL, Slatkin M. Excess of genomic defects in a woolly mammoth on Wrangel Island. Barsh GS, editor. PLoS Genet. 2017;13(3): e1006601. doi: 10.1371/journal.pgen.1006601
  31. Gao J, Li Q, Wang Z, et al. Sequencing, de novo assembling, and annotating the genome of the endangered Chinese crocodile lizard Shinisaurus crocodilurus. Gigascience. 2017;6(7): gix04. doi: 10.1093/gigascience/gix041
  32. Choo SW, Rayko M, Tan TK, et al. Pangolin genomes and the evolution of mammalian scales and immunity. Genome Res. 2016;26(10):1312–1322. doi: 10.1101/gr.203521.115
  33. McManus KF, Kelley JL, Song S, et al. Inference of Gorilla Demographic and Selective History from Whole-Genome Sequence Data. Mol Biol Evol. 2015;32(3):600–612. doi: 10.1093/molbev/msu394
  34. Li S, Li B, Cheng C, et al. Genomic signatures of near-extinction and rebirth of the crested ibis and other endangered bird species. Genome Biol. 2014;15(12):557. doi: 10.1186/s13059-014-0557-1
  35. Fan Z, Zhao G, Li P, et al. Whole-Genome Sequencing of Tibetan Macaque (Macaca thibetana) Provides New Insight into the Macaque Evolutionary History. Mol Biol Evol. 2014;31(6):1475–1489. doi: 10.1093/molbev/msu104
  36. Cho YS, Hu L, Hou H, et al. The tiger genome and comparative analysis with lion and snow leopard genomes. Nat Commun. 2013;4(1):2433. doi: 10.1038/ncomms3433
  37. Weisenfeld NI, Kumar V, Shah P, et al. Direct determination of diploid genome sequences. Genome Res. 2017;27(5):757–767. doi: 10.1101/gr.214874.116
  38. Burton JN, Adey A, Patwardhan RP, et al. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol. 2013;31(12):1119–1125. doi: 10.1038/nbt.2727
  39. Vollger MR, Logsdon GA, Audano PA, et al. Improved assembly and variant detection of a haploid human genome using single-molecule, high-fidelity long reads. Annals of Human Genetics. 2020;84(2):125–140. doi: 10.1111/ahg.12364
  40. Rhie A, McCarthy SA, Fedrigo O, et al. Towards complete and error-free genome assemblies of all vertebrate species. Nature. 2021;592(7856):737–746. doi: 10.1038/s41586-021-03451-0
  41. Convention on Biological Diversity [Internet]. Convention on Biological Diversity [cited 2020 Sep 21]. Available from: https://www.cbd.int
  42. Hoban S, Bruford M, D’Urban Jackson J, et al. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol Conserv. 2020;248:108654. doi: 10.1016/j.biocon.2020.108654
  43. Warr A, Robert C, Hume D, et al. Exome Sequencing: Current and Future Perspectives. G3: 2015;5(8):1543–1550. doi: 10.1534/g3.115.018564
  44. Lowry DB, Hoban S, Kelley JL, et al. Breaking RAD: an evaluation of the utility of restriction site-associated DNA sequencing for genome scans of adaptation. Mol Ecol Resour. 2017;17(2):142–152. doi: 10.1111/1755-0998.12635
  45. Illumina. Microarray Kits [Internet]. Illumina microarray lits. 2020 [cited 2020 Aug 22]. Available from: https://www.illumina.com/products/by-type/microarray-kits.html
  46. McVean GA, Altshuler DM, Durbin RM, et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491(7422):56–65. doi: 10.1038/nature11632
  47. Bijlsma R, Loeschcke V. Genetic erosion impedes adaptive responses to stressful environments. Evol Appl. 2012;5(2):117–129. doi: 10.1111/j.1752-4571.2011.00214.x
  48. Leroy G, Carroll EL, Bruford MW, et al. Next-generation metrics for monitoring genetic erosion within populations of conservation concern. Evol Appl. 2017;11(7):1066–1083. doi: 10.1111/eva.12564
  49. Charlesworth D, Willis JH. The genetics of inbreeding depression. Nat Rev Genet. 2009;10(11):783–796. doi: 10.1038/nrg2664
  50. Frankham R, Ballou JD, Eldridge MDB, et al. Predicting the Probability of Outbreeding Depression. Conserv Biol. 2011;25(3):465–475. doi: 10.1111/j.1523-1739.2011.01662.x
  51. Gautschi B, Müller JP, Schmid B, et al. Effective number of breeders and maintenance of genetic diversity in the captive bearded vulture population. Heredity. 2003;91(1):9–16. doi: 10.1038/sj.hdy.6800278
  52. McLennan EA, Gooley RM, Wise P, et al. Pedigree reconstruction using molecular data reveals an early warning sign of gene diversity loss in an island population of Tasmanian devils (Sarcophilus harrisii). Conserv Genet. 2018;19(2):439–450. doi: 10.1007/s10592-017-1017-8
  53. Gooley RM, Hogg CJ, Belov K, et al. The effects of group versus intensive housing on the retention of genetic diversity in insurance populations. BMC Zool. 2018;3(1):2. doi: 10.1186/s40850-017-0026-x
  54. Steiner CC, Putnam AS, Hoeck PEA, et al. Conservation Genomics of Threatened Animal Species. Annu Rev Anim Biosci. 2013;1(1):261–281. doi: 10.1146/annurev-animal-031412-103636
  55. Moradi MH, Nejati-Javaremi A, Moradi-Shahrbabak M, et al. Genomic scan of selective sweeps in thin and fat tail sheep breeds for identifying of candidate regions associated with fat deposition. BMC Genet. 2012;13(1):10. doi: 10.1186/1471-2156-13-10
  56. Zhu L, Deng C, Zhao X, et al. Endangered Père David’s deer genome provides insights into population recovering. Evol Appl. 2018;11(10):2040–2053. doi: 10.1111/eva.12705
  57. Bosse M, Megens H-J, Madsen O, et al. Using genome-wide measures of coancestry to maintain diversity and fitness in endangered and domestic pig populations. Genome Res. 2015;25(7):970–981. doi: 10.1101/gr.187039.114
  58. Hoban S, Gaggiotti O, ConGRESS Consortium, et al. Sample Planning Optimization Tool for conservation and population Genetics (SPOTG): a software for choosing the appropriate number of markers and samples. O’Hara RB, editor. Methods Ecol Evol. 2013;4(3):299–303. doi: 10.1111/2041-210x.12025
  59. Bashalkhanov S, Pandey M, Rajora OP. A simple method for estimating genetic diversity in large populations from finite sample sizes. BMC Genet. 2009;10(1):84. doi: 10.1186/1471-2156-10-84
  60. A reference standard for genome biology. Nat Biotechnol. 2018;36(12):1121–1121. doi: 10.1038/nbt.4318
  61. Groves CP, Cotterill FPD, Gippoliti S, et al. Species definitions and conservation: a review and case studies from African mammals. Conserv Genet. 2017;18(6):1247–1256. doi: 10.1007/s10592-017-0976-0
  62. Ryder OA. Species conservation and systematics: the dilemma of subspecies. Trends in Ecology and Evolution. 1986;(1):9–10. doi: 10.1016/0169-5347(86)90059-5
  63. Frankham R, Ballou JD, Dudash MR, et al. Implications of different species concepts for conserving biodiversity. Biological Conservation. 2012;153:25–31. doi: 10.1016/j.biocon.2012.04.034
  64. Supple MA, Shapiro B. Conservation of biodiversity in the genomics era. Genome Biol. 2018;19(1):131. doi: 10.1186/s13059-018-1520-3
  65. Funk WC, McKay JK, Hohenlohe PA, et al. Harnessing genomics for delineating conservation units. Trends in Ecology & Evolution. 2012;27(9):489–496. doi: 10.1016/j.tree.2012.05.012
  66. Patterson N, Price AL, Reich D. Population Structure and Eigenanalysis. PLOS Genetics. 2006;2(12):e190. doi: 10.1371/journal.pgen.0020190
  67. Pritchard JK, Stephens M, Donnelly P. Inference of Population Structure Using Multilocus Genotype Data. Genetics. 2000;(155):945–959. doi: 10.1093/genetics/155.2.945
  68. Guillot G, Mortier F, Estoup A. Geneland: a computer package for landscape genetics. Molecular Ecology Notes. 2005;5(3):712–715. doi: 10.1111/j.1471-8286.2005.01031.x
  69. Kinoshita E, Abramov AV, Soloviev VA, et al. Hybridization between the European and Asian badgers (Meles, Carnivora) in the Volga-Kama Region, revealed by analyses of maternally, paternally and biparentally inherited genes. Mammalian Biology. 2019;94:140–148. doi: 10.1016/j.mambio.2018.05.003
  70. Hedrick PW. Conservation Genetics and North American Bison (Bison bison). J Hered. 2009;100(4):411–420. doi: 10.1093/jhered/esp024
  71. Arakelyan MS. Mikroehvolyutsionnye protsessy v simpatricheskikh populyatsiyakh nekotorykh vidov reptilii Respubliki Armeniya i sopredel’nykh territorii [PhD Thesis]. NAN RA; 2012. (In Russ.)
  72. Wayne RK, Shaffer HB. Hybridization and endangered species protection in the molecular era. Molecular Ecology. 2016;25(11): 2680–2689. doi: 10.1111/mec.13642
  73. Li H, Durbin R. Inference of human population history from individual whole-genome sequences. Nature. 2011;475(7357):493–496. doi: 10.1038/nature10231
  74. Noskova E, Ulyantsev V, Koepfli K-P, et al. GADMA: Genetic algorithm for inferring demographic history of multiple populations from allele frequency spectrum data. Gigascience. 2020;9(3): giaa005. doi: 10.1093/gigascience/giaa005
  75. McVean GAT, Cardin NJ. Approximating the coalescent with recombination. Philosophical Transactions of the Royal Society B: Biological Sciences. 2005;360(1459):1387–1393. doi: 10.1098/rstb.2005.1673
  76. Nielsen R. Estimation of Population Parameters and Recombination Rates From Single Nucleotide Polymorphisms. Genetics. 2000;154(2):931–942. doi: 10.1093/genetics/154.2.931
  77. McLaren W, Gil L, Hunt SE, et al. The Ensembl Variant Effect Predictor. Genome Biol. 2016;17(1):122. doi: 10.1186/s13059-016-0974-4
  78. Cingolani P, Platts A, Wang LL, et al. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff. Fly. 2012;6(2):80–92. doi: 10.4161/fly.19695
  79. Ng PC, Henikoff S. SIFT: predicting amino acid changes that affect protein function. Nucleic Acids Res. 2003;31(13):3812–3814. doi: 10.1093/nar/gkg509
  80. Santymire RM, Lonsdorf EV, Lynch CM, et al. Inbreeding causes decreased seminal quality affecting pregnancy and litter size in the endangered black-footed ferret. Anim Conserv. 2019;22(4):331–340. doi: 10.1111/acv.12466
  81. Ruiz-Lopez MJ, Evenson DP, Espeso G, et al. High Levels of DNA Fragmentation in Spermatozoa Are Associated with Inbreeding and Poor Sperm Quality in Endangered Ungulates. Biol Reprod. 2010;83(3):332–338. doi: 10.1095/biolreprod.110.084798
  82. He X, Johansson ML, Heath DD. Role of genomics and transcriptomics in selection of reintroduction source populations. Conserv Biol. 2016;30(5):1010–1018. doi: 10.1111/cobi.12674
  83. Phelps J, Webb EL, Bickford D, et al. Boosting CITES. Science. 2010;330(6012):1752–1753. doi: 10.1126/science.1195558
  84. Koepfli K-P, Paten B, O’Brien SJ. The Genome 10K Project: A Way Forward. Annual Review of Animal Biosciences. 2015;3(1):57–111. doi: 10.1146/annurev-animal-090414-014900
  85. Nadachowska-Brzyska K, Burri R, Smeds L, et al. PSMC analysis of effective population sizes in molecular ecology and its application to black-and-white Ficedula flycatchers. Mol Ecol. 2016;25(5):1058–1072. doi: 10.1111/mec.13540
  86. Animal Genome Size Database [Internet] [cited 2020 Aug 14]. Available from: http://www.genomesize.com/
  87. Graphodatsky A, Perelman P, O’Brien SJ. Atlas of Mammalian Chromosomes. John Wiley & Sons, Incorporated; 2020. doi: 10.1002/9781119418061
  88. Graphodatsky AS. Conserved and variable elements of mammalian chromosomes. In: Cytogenetics of animals. Oxon, UK: CAB International Press; 1989. P. 95–124.
  89. Wang O, Chin R, Cheng X, et al. Efficient and unique cobarcoding of second-generation sequencing reads from long DNA molecules enabling cost-effective and accurate sequencing, haplotyping, and de novo assembly. Genome Res. 2019;29(5):798–808. doi: 10.1101/gr.245126.118
  90. Lewin HA, Graves JAM, Ryder OA, et al. Precision nomenclature for the new genomics. Gigascience. 2019;8(8): giz086. doi: 10.1093/gigascience/giz086
  91. NCBI. NCBI Genome [Internet] [cited 2020 Aug 10]. Available from: https://www.ncbi.nlm.nih.gov/genome/
  92. Vertebrate Genomes Project. GenomeArk [Internet] [cited 2020 Aug 10]. Available from: https://vgp.github.io/genomeark/
  93. DNAzoo. DNAzoo [Internet]. DNA Zoo [cited 2020 Aug 10]. Available from: https://www.dnazoo.org/assemblies
  94. The Cost of Sequencing a Human Genome [Internet]. Genome.gov. [cited 2020 Aug 28]. Available from: https://www.genome.gov/about-genomics/fact-sheets/Sequencing-Human-Genome-cost
  95. Santymire R. Implementing the use of a biobank in the endangered black-footed ferret (Mustela nigripes). Reprod Fertil Dev. 2016;28(8):1097. doi: 10.1071/RD15461
  96. Black-Footed Ferret | Revive & Restore [Internet] [cited 2020 Aug 28]. Available from: https://reviverestore.org/projects/black-footed-ferret/
  97. Kaebnick GE, Jennings B. De-extinction and Conservation. Hastings Center Report. 2017;47(S2): S2–4. doi: 10.1002/hast.728

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Dynamics for the number of endangered species, divided into various categories of Red List. This is based on previously published data [2]

Download (162KB)
3. Fig. 2. Tasks of conservation biology, solved by genetic, and bioinformatics methods

Download (171KB)
4. Fig. 3. Examples of heterozygosity visualization. а – a graph for total ROH length at different cutoff thresholds along the length for lions from different populations; b – heterozygosity of individuals of Sacharian oryx from different populations. The points on the graph correspond to the average level of heterozygosity for each chromosome separately; c – histogram for the number of heterozygous and homozygous variants reported for two subspecies of the sable antelope (Hippotragus niger). SB2027* and HN216* – individuals belonging to the southern subspecies (H. n. Niger), while the rest belong to Zambian subspecies (H. n. Kirkii); d – average level of heterozygosity and total length of ROH observed for the genomes of wolves of the Isle Royal Island population; e – average heterozygosity in sliding windows for giant otter and two subspecies of sea otter, northern and southern. Original images are from [12, 16, 20, 21, 24]

Download (247KB)
5. Fig. 4. Distribution of genome size for 540 mammalian species, from the Animal Genome Size Database [86]. For species with multiple subspecies or dimensions, median value was used

Download (86KB)
6. Fig. 5. The number of vertebrate species (Vertebrata) for which chromosome level genome assemblies were published and their coverage of vertebrate taxa: а – overlap by species between the three main databases of chromosomal assemblies; b – representation of vertebrate taxa in these databases. *Sauropsida including birds (Aves)

Download (128KB)

Copyright (c) 2021 ООО "Эко-Вектор"



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies