Molecular-genetic nature of resistance of the diamondback moth Plutella xylostella (Linnaeus 1758) to pyrethroids



Cite item

Full Text

Abstract

The diamondback moth (Plutella xylostella) is a globally significant pest of cruciferous crops, causing substantial economic losses. Resistance to pyrethroid insecticides, widely used for its control, has become a major issue. This study explores the molecular and genetic mechanisms underlying pyrethroid resistance in P. xylostella, focusing on mutations in the voltage-gated sodium channel gene (para), which is the primary target of pyrethroids.
The review involved the analysis of P. xylostella populations from various regions, particularly in Asia and Australia, where resistance to pyrethroids is prevalent. Molecular techniques, including KASP assays, PCR-based genotyping, and sequencing, were employed to identify and characterize resistance-associated mutations in the para gene. 
Several key mutations in the para PxNav were identified, including L1014F, T929I, and M918I, which are associated with pyrethroid resistance. These mutations were found to be widespread in Asian populations, with high frequencies observed in China. An analysis of the literature on resistance mechanisms in other insect species revealed resistance mutations at the same sites in a wide range of species, indicating its common mechanisms.
The identified mutations in the para gene provide valuable markers for resistance detection. The development of diagnostic tools based on these findings is crucial for effective resistance management and sustainable pest control. The review also emphasizes the need for integrated pest management (IPM) approaches to mitigate the spread of resistance and reduce reliance on chemical insecticides

Full Text

Restricted Access

About the authors

Dmitry Aleksandrovich Emelianov

Author for correspondence.
Email: dimitriy.nord@yandex.ru
ORCID iD: 0000-0002-0308-6108
Russian Federation

Fedor Denisovich Bogomaz

Email: pickayut2006@gmail.com
ORCID iD: 0009-0005-4885-3904

Ksenia Alekseevna Shabanova

Email: kotukkc@gmail.com
ORCID iD: 0009-0009-3296-3868

Tatiana V. Matveeva

Saint Petersburg State University; All-Russian Research Institute of Plant Protection

Email: radishlet@gmail.com
ORCID iD: 0000-0001-8569-6665
SPIN-code: 3877-6598
Scopus Author ID: 7006494611

Dr. Sci. (Biology), Professor, department of genetics and biotechnology

Russian Federation, 7–9 Universitetskaya emb., Saint Petersburg, 199034; Saint Petersburg

References

  1. Talekar NS, Shelton AM. Biology, ecology, and management of the diamondback moth. Annual Review of Entomology. 1993;38(1):275-301. doi: 10.1146/annurev.en.38.010193.001423.
  2. Mason P. Plutella xylostella (diamondback moth). CABI Compendium. CABI International; 2022. doi: 10.1079/cabicompendium.42318.
  3. Coulson SJ, Hodkinson ID, Webb NR, Mikkola K, Harrison JA, Pedgley DE. Aerial colonization of high Arctic islands by invertebrates: the diamondback moth Plutella xylostella (Lepidoptera: Yponomeutidae) as a potential indicator species. Diversity and Distributions. 2002;8(6):327-334. doi: 10.1046/j.1472-4642.2002.00157.x.
  4. Shelton AM. Management of the diamondback moth: déjà vu all over again? In: The management of diamondback moth and other crucifer pests. 2004:3-8.
  5. Zalucki MP, Shabbir A, Silva R, Adamson D, Shu-Sheng L, Furlong MJ. Estimating the economic cost of one of the world's major insect pests, Plutella xylostella (Lepidoptera: Plutellidae): just how long is a piece of string? Journal of Economic Entomology. 2012;105(4):1115-1129. doi: 10.1603/EC12107.
  6. Velikan VS, Golub VB, Gur'eva EL, et al. Opredelitel' vrednykh i poleznykh nasekomykh i kleshchei zernovykh kul'tur v SSSR. Leningrad: Kolos; 1980. 335 p. (In Russ.)
  7. Hardy JE. Plutella maculipennis Curt., its natural and biological control in England. Bulletin of Entomological Research. 1938;29:343-372.
  8. Kfir R. Origin of the diamondback moth (Lepidoptera: Plutellidae). Annals of the Entomological Society of America. 1998;91(2):164-167.
  9. Liu X, et al. Cross‐resistance, mode of inheritance, synergism, and fitness effects of cyantraniliprole resistance in Plutella xylostella. Entomologia Experimentalis et Applicata. 2015;157(3):271-278. doi: 10.1111/eea.12345.
  10. Juric I, Salzburger W, Balmer O. Spread and global population structure of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) and its larval parasitoids Diadegma semiclausum and Diadegma fenestrale (Hymenoptera: Ichneumonidae) based on mtDNA. Bulletin of Entomological Research. 2017;107(2):155-164. doi: 10.1017/S000748531600085X.
  11. Andreyeva IA, Shatalova EI, Khodakova AV. Plutella xylostella: ecological and biological aspects, harmfulness, and population control. Vestnik Zashchity Rasteniy. 2021;104(1):28-39. (In Russ.)
  12. Spichenko NN, Krivokhizhin VI, Shternshis MV, Mishchenko VS. Zashchita kapusty ot vreditelei s minimal'nym primeneniem yadokhimikatov v Novosibirskoi oblasti. Novosibirsk; 1985. 20 p. (In Russ.)
  13. Shternshis MV, Andreeva IV, Shatalova EI, Shul'gina OA. Primenenie biopreparatov dlya zashchity kapusty ot fitofagov v Zapadnoi Sibiri. Novosibirsk; 2012. 25 p. (In Russ.)
  14. Gorbunov NN, et al. Fitosanitarnyi kontrol' za vreditelyami i sornyakami sel'skokhozyaistvennykh kul'tur v Sibiri. Novosibirsk: Novosibirskii GAU; 2001. (In Russ.)
  15. Zhao JZ, Li YX, Collins H, Gusukuma-Minuto L, Mau RFL, Thompson GD, Shelton AM. Monitoring and characterization of diamondback moth (Lepidoptera: Plutellidae) resistance to Spinosad. Journal of Economic Entomology. 2002;95(2):430-436. doi: 10.1603/0022-0493-95.2.430.
  16. Uthamasamy S, Kannan M, Senguttuvan K, Jayaprakash SA. Status, damage potential, and management of diamondback moth, Plutella xylostella in Tamil Nadu, India. In: Proceedings of the 6th International Workshop on Diamondback Moth. AVRDC, Taiwan; 2011:270-279.
  17. Walker GP, Cameron PJ, Berry NA. Implementing of an IPM programme for vegetable brassicas in New Zealand. Regional Institute. 2013. Available from: http://regional.org.au/au/esa/2001/13/1301walker.htm.
  18. Sparks TC, et al. Insecticides, biologics, and nematicides: Updates to IRAC's mode of action classification—a tool for resistance management. Pesticide Biochemistry and Physiology. 2020;167:104587. doi: 10.1016/j.pestbp.2020.104587.
  19. Mota-Sanchez D, Wise JC, Poppen RV, Gut LJ, Hollingworth RM. Resistance of codling moth, Cydia pomonella (L.) (Lepidoptera: Tortricidae), larvae in Michigan to insecticides with different modes of action and the impact on field residual activity. Pest Management Science. 2008;64(9):881-890. doi: 10.1002/ps.1576.
  20. Ankersmit GW. DDT resistance in Plutella maculipennis (Curt.) (Lep.) in Java. Bulletin of Entomological Research. 1953;44:421-425. doi: 10.1017/S0007485300025530.
  21. Johnson DR. Plutella maculipennis resistance to DDT in Java. Journal of Economic Entomology. 1953;46(1):176.
  22. Sukhoruchenko GI, Dolzhenko VI, Gannibal FB, et al. Resistance of harmful arthropods, phytopathogenic fungi, and rodents to pesticides. St. Petersburg: Petropolis; 2024. 672 p. (In Russ.)
  23. Tabashnik BE, Cushing NL, Finson N, Johnson MW. Field development of resistance to Bacillus thuringiensis in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology. 1990;83(5):1671-1676. doi: 10.1093/jee/83.5.1671.
  24. Hama H, Suzuki K, Tanaka H. Inheritance and stability of resistance to Bacillus thuringiensis formulations of the diamondback moth, Plutella xylostella (Linnaeus) (Lepidoptera: Yponomeutidae). Applied Entomology and Zoology. 1992;27(3):355-362. doi: 10.1303/aez.27.355.
  25. Sayyed AH, Wright DJ. Fipronil resistance in the diamondback moth (Lepidoptera: Plutellidae): inheritance and number of genes involved. Journal of Economic Entomology. 2004;97(6):2043-2050. doi: 10.1093/jee/97.6.2043.
  26. Zhang S, Zhang X, Shen J, Mao K, You H, Li J. Susceptibility of field populations of the diamondback moth, Plutella xylostella, to a selection of insecticides in Central China. Pesticide Biochemistry and Physiology. 2016;132:38-46. doi: 10.1016/j.pestbp.2016.01.007.
  27. Perng FS, et al. Teflubenzuron resistance in diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology. 1988;81(5):1277-1282.
  28. Kobayashi S. Resistance of diamondback moth to insect growth regulators. In: Diamondback Moth and Other Crucifer Pests. Proceedings of the 2nd International Workshop, AVRDC; 1992:383-390.
  29. Iqbal M, et al. Evidence for resistance to Bacillus thuringiensis (Bt) subsp. kurstaki HD‐1, Bt subsp. aizawai and Abamectin in field populations of Plutella xylostella from Malaysia. Pesticide Science. 1996;48(1):89-97.
  30. Attique MNR, Khaliq A, Sayyed AH. Could resistance to insecticides in Plutella xylostella (Lep., Plutellidae) be overcome by insecticide mixtures? Journal of Applied Entomology. 2006;130(2):122-127.
  31. Sukonthabhirom S. Update on DBM diamide resistance from Thailand/causal factors and learnings. IRAC. 2009. Available from: http://www.irac-online.org/wp-content/uploads/2009/09/F2F-Diamide-WG-Mtg-2011_IRACa.pdf.
  32. Ribeiro LMS, et al. Field resistance of Brazilian Plutella xylostella to diamides is not metabolism-mediated. Crop Protection. 2017;93:82-88. doi: 10.1016/j.cropro.2016.11.018.
  33. Sarfraz M, Dosdall LM, Keddie BA. Resistance of some cultivated Brassicaceae to infestations by Plutella xylostella (Lepidoptera: Plutellidae). Journal of Economic Entomology. 2007;100(1):215-224. doi: 10.1093/jee/100.1.215.
  34. da Silva Ponce F, et al. Low tunnels with shading meshes: An alternative for the management of insect pests in kale cultivation. Scientia Horticulturae. 2021;288:110284. doi: 10.1016/j.scienta.2021.110284.
  35. Furlong MJ, et al. Experimental analysis of the influence of pest management practice on the efficacy of an endemic arthropod natural enemy complex of the diamondback moth. Journal of Economic Entomology. 2004;97(6):1814-1827. doi: 10.1093/jee/97.6.1814.
  36. Ohno T, Asayama T, Ichikawa K. Evaluation of communication disruption method using synthetic sex pheromone to suppress diamondback moth infestations. In: Diamondback Moth and Other Crucifer Pests: Proceedings of the Second International Workshop. Tainan, Taiwan; 1990:10-14.
  37. Bin Bahari I. Radiation-induced changes in reproductive ability of diamondback moth (Lepidoptera: Plutellidae). Journal of Economic Entomology. 1994;87(5):1190-1197.
  38. Palmquist K, Salatas J, Fairbrother A. Pyrethroid insecticides: use, environmental fate, and ecotoxicology. In: Insecticides—advances in integrated pest management. 2012:251-278.
  39. Alesho NA, Kostina MN, Kaira AN. Sovremennye metody i sredstva unichtozheniya vrednykh nasekomykh i kleshchei — perenoschikov vozbuditelei boleznei cheloveka. Moscow: RMAPO; 2015. 68 p. (In Russ.)
  40. Williamson MS, Martinez-Torres D, Hick CA, Devonshire AL. Identification of mutations in the housefly para-type sodium channel gene associated with knockdown resistance (kdr) to pyrethroid insecticides. Molecular and General Genetics. 1996;252:51-60. doi: 10.1007/BF02173204.
  41. Dong K, Du Y, Rinkevich F, Nomura Y, Xu P, Wang L, Silver K, Zhorov BS. Molecular biology of insect sodium channels and pyrethroid resistance. Insect Biochemistry and Molecular Biology. 2014;44:30-38. doi: 10.1016/j.ibmb.2014.03.012.
  42. Brackenbury WJ, Isom LL. Na+ channel β subunits: overachievers of the ion channel family. Frontiers in Pharmacology. 2011;2:53. doi: 10.3389/fphar.2011.00053.
  43. Catterall WA. From ionic currents to molecular mechanisms: the structure and function of voltage-gated sodium channels. Neuron. 2000;26:13-25. doi: 10.1016/S0896-6273(00)81133-2.
  44. Dong K. Insect sodium channels and insecticide resistance. Invertebrate Neuroscience. 2007;7:17-30. doi: 10.1007/s10158-006-0036-9.
  45. Loughney K, Kreber R, Ganetzky B. Molecular analysis of the para locus, a sodium channel gene in Drosophila. Cell. 1989;58(6):1143-1154. doi: 10.1016/0092-8674(89)90512-6.
  46. Soderlund DM, Bloomquist JR. Neurotoxic actions of pyrethroid insecticides. Annual Review of Entomology. 1989;34:77-96. doi: 10.1146/annurev.en.34.010189.000453.
  47. Feng G, et al. Cloning and functional analysis of TipE, a novel membrane protein that enhances Drosophila para sodium channel function. Cell. 1995;82(6):1001-1011. doi: 10.1016/0092-8674(95)90277-5.
  48. Warmke JW, et al. Functional expression of Drosophila para sodium channels: modulation by the membrane protein TipE and toxin pharmacology. Journal of General Physiology. 1997;110(2):119-133. doi: 10.1085/jgp.110.2.119.
  49. Bourdin CM, et al. Intron retention in mRNA encoding ancillary subunit of insect voltage-gated sodium channel modulates channel expression, gating regulation, and drug sensitivity. PLoS One. 2013;8(8):e67290. doi: 10.1371/journal.pone.0067290.
  50. Du Y, et al. Molecular evidence for dual pyrethroid-receptor sites on a mosquito sodium channel. Proceedings of the National Academy of Sciences. 2013;110(29):11785-11790. doi: 10.1073/pnas.1305118110.
  51. Lee SH, et al. Mutations in the house fly Vssc1 sodium channel gene associated with super-kdr resistance abolish the pyrethroid sensitivity of Vssc1/tipE sodium channels expressed in Xenopus oocytes. Insect Biochemistry and Molecular Biology. 1999;29(2):185-194. doi: 10.1016/S0965-1748(98)00119-1.
  52. Derst C, et al. Four novel sequences in Drosophila melanogaster homologous to the auxiliary Para sodium channel subunit TipE. Biochemical and Biophysical Research Communications. 2006;339(3):939-948. doi: 10.1016/j.bbrc.2006.01.096.
  53. Narahashi T. Neuronal ion channels as the target sites of insecticides. Pharmacology & Toxicology. 1996;79(1):1-14. doi: 10.1111/j.1600-0773.1996.tb00234.x.
  54. Silver KS, et al. Voltage-gated sodium channels as insecticide targets. Advances in Insect Physiology. 2014;46:389-433. doi: 10.1016/B978-0-12-417010-0.00005-7.
  55. Soderlund DM. Molecular mechanisms of pyrethroid insecticide neurotoxicity: recent advances. Archives of Toxicology. 2012;86:165-181. doi: 10.1007/s00204-011-0726-x.
  56. Shen XJ, et al. A comprehensive assessment of insecticide resistance mutations in source and immigrant populations of the diamondback moth Plutella xylostella (L.). Pest Management Science. 2023;79(2):569-583. doi: 10.1002/ps.7223.
  57. Liu Z, et al. Frequencies of insecticide resistance mutations detected by the amplicon sequencing in Plutella xylostella (Lepidoptera: Plutellidae) and Spodoptera exigua (Lepidoptera: Noctuidae) from China. Journal of Economic Entomology. 2024;117(4):1648-1654. doi: 10.1093/jee/toae012.
  58. Kwon DH, et al. Knockdown resistance allele frequency in field populations of Plutella xylostella in Korea. Pesticide Biochemistry and Physiology. 2004;80(1):21-30. doi: 10.1016/j.pestbp.2004.06.001.
  59. Endersby NM, et al. Widespread pyrethroid resistance in Australian diamondback moth, Plutella xylostella (L.), is related to multiple mutations in the para sodium channel gene. Bulletin of Entomological Research. 2011;101(4):393-405. doi: 10.1017/S0007485310000684.
  60. Sonoda S. Molecular analysis of pyrethroid resistance conferred by target insensitivity and increased metabolic detoxification in Plutella xylostella. Pest Management Science. 2010;66(5):572-575. doi: 10.1002/ps.1918.
  61. Busvine JR. Mechanism of resistance to insecticide in houseflies. Nature. 1951;168:193-195. doi: 10.1038/168193a0.
  62. Soderlund DM, Knipple DC. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochemistry and Molecular Biology. 2003;33(6):563-577. doi: 10.1016/S0965-1748(03)00023-7.
  63. Schuler TH, et al. Toxicological, electrophysiological, and molecular characterisation of knockdown resistance to pyrethroid insecticides in the diamondback moth, Plutella xylostella (L.). Pesticide Biochemistry and Physiology. 1998;59(3):169-182. doi: 10.1006/pest.1998.2320.
  64. Vais H, et al. The molecular interactions of pyrethroid insecticides with insect and mammalian sodium channels. Pest Management Science. 2001;57(10):877-888. doi: 10.1002/ps.392.
  65. Soderlund DM, Knipple DC. The molecular biology of knockdown resistance to pyrethroid insecticides. Insect Biochemistry and Molecular Biology. 2003;33(6):563-577. doi: 10.1016/S0965-1748(03)00023-7.
  66. Usherwood PNR, et al. Mutations in DIIS5 and the DIIS4-S5 linker of Drosophila melanogaster sodium channel define binding domains for pyrethroids and DDT. FEBS Letters. 2007;581(28):5485-5492. doi: 10.1016/j.febslet.2007.10.057.
  67. Chang CC, et al. Insecticide resistance and characteristics of mutations related to target site insensitivity of diamondback moths in Taiwan. Pesticide Biochemistry and Physiology. 2024;203:106001. doi: 10.1016/j.pestbp.2024.106001.
  68. Chen M, et al. Chronology of sodium channel mutations associated with pyrethroid resistance in Aedes aegypti. Archives of Insect Biochemistry and Physiology. 2020;104(2):e21686. doi: 10.1002/arch.21686.
  69. Kawada H, Higa Y, Kasai S. Reconsideration of importance of the point mutation L982W in the voltage-sensitive sodium channel of the pyrethroid resistant Aedes aegypti (L.) (Diptera: Culicidae) in Vietnam. PLoS One. 2023;18(5):e0285883. doi: 10.1371/journal.pone.0285883.
  70. Nazemi A, Khajehali J, Van Leeuwen T. Incidence and characterization of resistance to pyrethroid and organophosphorus insecticides in Thrips tabaci (Thysanoptera: Thripidae) in onion fields in Isfahan, Iran. Pesticide Biochemistry and Physiology. 2016;129:28-35. doi: 10.1016/j.pestbp.2015.10.013.
  71. Jouraku A, et al. T929I and K1774N mutation pair and M918L single mutation identified in the voltage-gated sodium channel gene of pyrethroid-resistant Thrips tabaci (Thysanoptera: Thripidae) in Japan. Pesticide Biochemistry and Physiology. 2019;158:77-87. doi: 10.1016/j.pestbp.2019.04.012.
  72. Wu M, et al. Identification of an alternative knockdown resistance (kdr)-like mutation, M918L, and a novel mutation, V1010A, in the Thrips tabaci voltage-gated sodium channel gene. Pest Management Science. 2014;70(6):977-981. doi: 10.1002/ps.3638.
  73. Boné E, et al. Characterization of the pyrethroid resistance mechanisms in a Blattella germanica (Dictyoptera: Blattellidae) strain from Buenos Aires (Argentina). Bulletin of Entomological Research. 2022;112(1):21-28. doi: 10.1017/S000748532100050X.
  74. Pridgeon JW, et al. Variability of resistance mechanisms in pyrethroid resistant German cockroaches (Dictyoptera: Blattellidae). Pesticide Biochemistry and Physiology. 2002;73(3):149-156. doi: 10.1016/S0048-3575(02)00103-7.
  75. Guerrero FD, Jamroz RC, Kammlah D, Kunz SE. Toxicological and molecular characterization of pyrethroid-resistant horn flies, Haematobia irritans: identification of kdr and super-kdr point mutations. Insect Biochemistry and Molecular Biology. 1997;27:745-755. doi: 10.1016/S0965-1748(97)00057-X.
  76. Marshall KL, Moran C, Chen Y, Herron GA. Detection of kdr pyrethroid resistance in the cotton aphid, Aphis gossypii (Hemiptera: Aphididae), using a PCR-RFLP assay. Journal of Pesticide Science. 2012;37:169-172. doi: 10.1584/jpestics.D11-017.
  77. Nyoni BN, Gorman K, Mzilahowa T, Williamson MS, Navajas M, Field LM, Bass C. Pyrethroid resistance in the tomato red spider mite, Tetranychus evansi, is associated with mutation of the para-type sodium channel. Pest Management Science. 2011;67:891-897. doi: 10.1002/ps.2145.
  78. Davies TG, Field LM, Usherwood PN, Williamson MS. A comparative study of voltage-gated sodium channels in the Insecta: implications for pyrethroid resistance in Anopheline and other Neopteran species. Insect Molecular Biology. 2007;16:361-375. doi: 10.1111/j.1365-2583.2007.00733.x.
  79. Eleftherianos I, Foster SP, Williamson MS, Denholm I. Characterization of the M918T sodium channel gene mutation associated with strong resistance to pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer). Bulletin of Entomological Research. 2008;98:183-191. doi: 10.1017/S0007485307005524.
  80. Toda S, Morishita M. Identification of three point mutations on the sodium channel gene in pyrethroid-resistant Thrips tabaci (Thysanoptera: Thripidae). Journal of Economic Entomology. 2009;102(6):2296-2300. doi: 10.1603/029.102.0635.
  81. Haddi K, et al. Identification of mutations associated with pyrethroid resistance in the voltage-gated sodium channel of the tomato leaf miner (Tuta absoluta). Insect Biochemistry and Molecular Biology. 2012;42(7):506-513. doi: 10.1016/j.ibmb.2012.03.008.
  82. Carletto J, et al. Insecticide resistance traits differ among and within host races in Aphis gossypii. Pest Management Science. 2010;66(3):301-307. doi: 10.1002/ps.1874.
  83. Weston DP, Poynton HC, Wellborn GA, Lydy MJ, Blalock BJ, Sepulveda MS, Colbourne JK. Multiple origins of pyrethroid insecticide resistance across the species complex of a nontarget aquatic crustacean, Hyalella azteca. Proceedings of the National Academy of Sciences. 2013;110:16532-16537. doi: 10.1073/pnas.1302023110.
  84. Karatolos N, et al. Mutations in the sodium channel associated with pyrethroid resistance in the greenhouse whitefly, Trialeurodes vaporariorum. Pest Management Science. 2012;68(6):834-838. doi: 10.1002/ps.2334.
  85. Morin S, et al. Mutations in the Bemisia tabaci para sodium channel gene associated with resistance to a pyrethroid plus organophosphate mixture. Insect Biochemistry and Molecular Biology. 2002;32(12):1781-1791. doi: 10.1016/S0965-1748(02)00137-6.
  86. Bao WX, Sonoda S. Resistance to cypermethrin in melon thrips, Thrips palmi, (Thysanoptera: Thripidae), is conferred by reduced sensitivity of the sodium channel and CYP450-mediated detoxification. Applied Entomology and Zoology. 2012;47:443-448. doi: 10.1007/s13355-012-0126-6.
  87. Rinkevich FD, et al. Multiple evolutionary origins of knockdown resistance (kdr) in pyrethroid-resistant Colorado potato beetle, Leptinotarsa decemlineata. Pesticide Biochemistry and Physiology. 2012;104(3):192-200. doi: 10.1016/j.pestbp.2012.08.001.
  88. Araujo RA, Williamson MS, Bass C, Field LM, Duce IR. Pyrethroid resistance in Sitophilus zeamais is associated with a mutation (T929I) in the voltage-gated sodium channel. Insect Molecular Biology. 2011;20:437-445. doi: 10.1111/j.1365-2583.2011.01079.x.
  89. Forcioli D, Frey B, Frey JE. High nucleotide diversity in the para-like voltage-sensitive sodium channel gene sequence in the western flower thrips (Thysanoptera: Thripidae). Journal of Economic Entomology. 2002;95:838-848. doi: 10.1603/0022-0493-95.4.838.
  90. Roditakis E, Tsagkarakou A, Vontas J. Identification of mutations in the para sodium channel of Bemisia tabaci from Crete, associated with resistance to pyrethroids. Pesticide Biochemistry and Physiology. 2006;85(3):161-166. doi: 10.1016/j.pestbp.2005.11.007.
  91. Bass C, et al. Identification of mutations associated with pyrethroid resistance in the para-type sodium channel of the cat flea, Ctenocephalides felis. Insect Biochemistry and Molecular Biology. 2004;34(12):1305-1313. doi: 10.1016/j.ibmb.2004.09.002.
  92. Stump AD, Atieli FK, Vulule JM, Besansky NJ. Dynamics of the pyrethroid knockdown resistance allele in western Kenyan populations of Anopheles gambiae in response to insecticide-treated bed net trials. American Journal of Tropical Medicine and Hygiene. 2004;70:591-596.
  93. Singh OP, Dykes CL, Das MK, Pradhan S, Bhatt RM, Agrawal OP, Adak T. Presence of two alternative kdr-like mutations, L1014F and L1014S, and a novel mutation, V1010L, in the voltage-gated Na+ channel of Anopheles culicifacies from Orissa, India. Malaria Journal. 2010;9:146. doi: 10.1186/1475-2875-9-146.
  94. Ranson H, et al. Identification of a point mutation in the voltage-gated sodium channel gene of Kenyan Anopheles gambiae associated with resistance to DDT and pyrethroids. Insect Molecular Biology. 2000;9(5):491-497. doi: 10.1046/j.1365-2583.2000.00209.x.
  95. Verhaeghen K, et al. Knockdown resistance in Anopheles vagus, An. sinensis, An. paraliae and An. peditaeniatus populations of the Mekong region. Parasites & Vectors. 2010;3:1-12. doi: 10.1186/1756-3305-3-59.
  96. Lüleyap HÜ, et al. Detection of knockdown resistance mutations in Anopheles sacharovi (Diptera: Culicidae) and genetic distance with Anopheles gambiae (Diptera: Culicidae) using cDNA sequencing of the voltage-gated sodium channel gene. Journal of Medical Entomology. 2002;39(6):870-874. doi: 10.1603/0022-2585-39.6.870.
  97. Chen L, et al. Molecular ecology of pyrethroid knockdown resistance in Culex pipiens pallens mosquitoes. PLoS One. 2010;5(7):e11681. doi: 10.1371/journal.pone.0011681.
  98. Martinez-Torres D, et al. A sodium channel point mutation is associated with resistance to DDT and pyrethroid insecticides in the peach-potato aphid, Myzus persicae (Sulzer) (Hemiptera: Aphididae). Insect Molecular Biology. 1999;8(3):339-346. doi: 10.1046/j.1365-2583.1999.830339.x.
  99. Hopkins BW, Pietrantonio PV. The Helicoverpa zea (Boddie) (Lepidoptera: Noctuidae) voltage-gated sodium channel and mutations associated with pyrethroid resistance in field-collected adult males. Insect Biochemistry and Molecular Biology. 2010;40(5):385-393. doi: 10.1016/j.ibmb.2010.03.004.
  100. Field LM, et al. Voltage-gated sodium channel genes hscp and hDSC1 of Heliothis virescens F. genomic organization. Insect Molecular Biology. 1999;8(2):161-170. doi: 10.1046/j.1365-2583.1999.820161.x.
  101. Liu N, Pridgeon JW. Metabolic detoxication and the kdr mutation in pyrethroid resistant house flies, Musca domestica (L.). Pesticide Biochemistry and Physiology. 2002;73(3):157-163. doi: 10.1016/S0048-3575(02)00101-3.
  102. Rinkevich FD, et al. Frequencies of the pyrethroid resistance alleles of Vssc1 and CYP6D1 in house flies from the eastern United States. Insect Molecular Biology. 2006;15(2):157-167. doi: 10.1111/j.1365-2583.2006.00620.x.
  103. Olafson PU, Pitzer JB, Kaufman PE. Identification of a mutation associated with permethrin resistance in the para-type sodium channel of the stable fly (Diptera: Muscidae). Journal of Economic Entomology. 2011;104(1):250-257. doi: 10.1603/EC10307.
  104. Kim H, et al. Frequency detection of pyrethroid resistance allele in Anopheles sinensis populations by real-time PCR amplification of specific allele (rtPASA). Pesticide Biochemistry and Physiology. 2007;87(1):54-61. doi: 10.1016/j.pestbp.2006.06.009.
  105. Lol JC, et al. Molecular evidence for historical presence of knock-down resistance in Anopheles albimanus, a key malaria vector in Latin America. Parasites & Vectors. 2013;6:1-7. doi: 10.1186/1756-3305-6-268.
  106. Wang ZM, et al. Detection and widespread distribution of sodium channel alleles characteristic of insecticide resistance in Culex pipiens complex mosquitoes in China. Medical and Veterinary Entomology. 2012;26(2):228-232. doi: 10.1111/j.1365-2915.2011.00985.x.
  107. Tan WL, et al. First detection of multiple knockdown resistance (kdr)-like mutations in voltage-gated sodium channel using three new genotyping methods in Anopheles sinensis from Guangxi Province, China. Journal of Medical Entomology. 2014;49(5):1012-1020. doi: 10.1603/ME11266.
  108. O'Reilly AO, et al. Predictive 3D modelling of the interactions of pyrethroids with the voltage-gated sodium channels of ticks and mites. Pest Management Science. 2014;70(3):369-377. doi: 10.1002/ps.3561.
  109. Chrustek A, et al. Current research on the safety of pyrethroids used as insecticides. Medicina. 2018;54(4):61. doi: 10.3390/medicina54040061.
  110. Bradberry SM, et al. Poisoning due to pyrethroids. Toxicological Reviews. 2005;24:93-106. doi: 10.2165/00139709-200524020-00003.
  111. Wang M, et al. Influence of seasonal migration on evolution of insecticide resistance in Plutella xylostella. Insect Science. 2022;29(2):496-504. doi: 10.1111/1744-7917.12987.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.