Association of VEGF +405 C > G (rs2010963) polymorphism with susceptibility of metabolic syndrome: Cardio-metabolic risk factors and serum Matrix Metaloproteinase-3 concentrations

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: In the present study we investigated the role of +405 VEGF gene polymorphism in the pathogenesis of metabolic syndrome and to explore its association with several biochemical risk factors.

MATERIALS AND METHODS: VEGF +405 single nucleotide polymorphism were genotyped in 150 patients with metabolic syndrome and 50 healthy individuals using the PCR-RFLP method. Serum levels of biochemical variables were assessed by commercial ELISA technique.

RESULTS: GC genotype was more prevalent among patients with metabolic syndrome. In GC genotype, patients with metabolic syndrome had higher waist to hip ratio, WHR, triglyceride, and lower high density lipoprotein and alanine aminotransferase concentrations compared with the control group.

CONCLUSIONS: The current study demonstrated that +405 VEGF gene polymorphism was a potent predictor of metabolic abnormalities in patients with metabolic syndrome. Further studies with larger sample size are needed to clarify these associations properly.

Full Text

Restricted Access

About the authors

Leila Nikniaz

Tabriz Health Services Management Research Center; Tabriz University of Medical Sciences

Email: nikniaz@yahoo.com
Scopus Author ID: 25031589500
Iran, Islamic Republic of, Tabriz, Attar Neyshabouri Street

Mahdieh Abbasalizad-Farhangi

Tabriz University of Medical Sciences

Author for correspondence.
Email: abbasalizad_m@yahoo.com
Iran, Islamic Republic of, Tabriz, Attar Neyshabouri Street

References

  1. Reaven GM. Role of insulin resistance in human disease. Diabetes. 1988;37(12):1595–1607. doi: 10.2337/diab.37.12.1595
  2. Heshmat R, Hemati Z, Qorbani M, et al. Metabolic syndrome and associated factors in Iranian children and adolescents: the CASPIAN-V study. J Cardiovasc Thorac Res. 2018;10(4):214–220. doi: 10.15171/jcvtr.2018.37
  3. Zhang X, Lerman LO. The metabolic syndrome and chronic kidney disease. Transl Res. 2017;183:14–25. doi: 10.1016/j.trsl.2016.12.004
  4. Kim D, Touros A, Kim WR. Nonalcoholic fatty liver disease and metabolic syndrome. Clinics in liver disease. 2018;22(1):133–140. doi: 10.1016/j.cld.2017.08.010
  5. Ghanei Gheshlagh R, Parizad N, Sayehmiri K. The relationship between depression and metabolic syndrome: systematic review and meta-analysis study. Iran Red Crescent Med J. 2016;18: e26523-e. doi: 10.5812/ircmj.26523
  6. Mottillo S, Filion KB, Genest J, et al. The metabolic syndrome and cardiovascular risk: A systematic review and meta-analysis. J Am Coll Cardiol. 2010;56(14):1113–1132. doi: 10.1016/j.jacc.2010.05.034
  7. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA. 2002;287(3):356–359. doi: 10.1001/jama.287.3.356
  8. Zabetian A, Hadaegh F, Azizi F. Prevalence of metabolic syndrome in Iranian adult population, concordance between the IDF with the ATP III and the WHO definitions. Diabetes Res Clin Pract. 2007;77(2) 251–257. doi: 10.1016/j.diabres.2006.12.001
  9. Miyazawa-Hoshimoto S, Takahashi K, Bujo H, et al. Elevated serum vascular endothelial growth factor is associated with visceral fat accumulation in human obese subjects. Diabetologia. 2003;46:1483–1488. doi: 10.1007/s00125-003-1221-6
  10. Watson CJ, Webb NJ, Bottomley MJ, Brenchley PE. Identification of polymorphisms within the vascular endothelial growth factor (VEGF) gene: correlation with variation in VEGF protein production. Cytokine. 2000;12(8):1232–1235. doi: 10.1006/cyto.2000.0692
  11. Kim YR, Hohong S. Association between the polymorphisms of the vascular endothelial growth factor gene and metabolic syndrome. Biomed Rep. 2015;3(3):319–326. doi: 10.3892/br.2015.423
  12. Moradzadegan A, Vaisi-Raygani A, Nikzamir A, Rahimi Z. Angiotensin converting enzyme insertion/deletion (I/D)(rs4646994) and Vegf polymorphism (+405G/C; rs2010963) in type II diabetic patients: Association with the risk of coronary artery disease. J Renin Angiotensin Aldosterone Syst. 2015;16:672–680. doi: 10.1177/1470320313497819
  13. Ray D, Mishra M, Ralph S, et al. Association of the VEGF gene with proliferative diabetic retinopathy but not proteinuria in diabetes. Diabetes. 2004;53(3):861–864. doi: 10.2337/diabetes.53.3.861
  14. Zafar MI, Mills K, Ye X, et al. Association between the expression of vascular endothelial growth factors and metabolic syndrome or its components: a systematic review and meta-analysis. Diabetology & metabolic syndrome. 2018;10:62–72. doi: 10.1186/s13098-018-0363-0
  15. Siervo M, Ruggiero D, Sorice R, et al. Body mass index is directly associated with biomarkers of angiogenesis and inflammation in children and adolescents. Nutrition. 2012;28(3):262–266. doi: 10.1016/j.nut.2011.06.007
  16. Kimura K, Hashiguchi T, Deguchi T, et al. Serum VEGF – as a prognostic factor of atherosclerosis. Atherosclerosis. 2007;194(1):182–188. doi: 10.1016/j.atherosclerosis.2006.07.025
  17. Szaflik JP, Wysocki T, Kowalski M, et al. An association between vascular endothelial growth factor gene promoter polymorphisms and diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol. 2008;246:39–43. doi: 10.1007/s00417-007-0674-6
  18. Petrovič D, Verhovec R, Petrovič MG, et al. Association of vascular endothelial growth factor gene polymorphism with myocardial infarction in patients with type 2 diabetes. Cardiology. 2007;107(4):291–295. doi: 10.1159/000099064
  19. Hagberg CE, Mehlem A, Falkevall A, et al. Targeting VEGF-B as a novel treatment for insulin resistance and type 2 diabetes. Nature. 2012;490:426–430. doi: 10.1038/nature11464
  20. Kanaki T, Bujo H, Mori S, et al. Functional analysis of aortic endothelial cells expressing mutant PDGF receptors with respect to expression of matrix metalloproteinase-3. Biochem Biophys Res Commun. 2002;294(2):231–237. doi: 10.1016/S0006-291X(02)00468-0
  21. Silvestre JS, Mallat Z, Tamarat R, et al. Regulation of matrix metalloproteinase activity in ischemic tissue by interleukin-10: role in ischemia-induced angiogenesis. Circ Res. 2001;89(3):259–264. doi: 10.1161/hh1501.094269
  22. Chang C, Werb Z. The many faces of metalloproteases: cell growth, invasion, angiogenesis and metastasis. Trends Cell Biol. 2001;11(1): S37–S43. doi: 10.1016/S0962-8924(01)82222-4
  23. Murphy G, Nagase H. Localizing matrix metalloproteinase activities in the pericellular environment. FEBS J. 2011;278(1):2–15. doi: 10.1111/j.1742-4658.2010.07918.x
  24. Thorp E. Contrasting inflammation resolution during atherosclerosis and post myocardial infarction at the level of monocyte/macrophage phagocytic clearance. Front Immunol. 2012;3:39–49. doi: 10.3389/fimmu.2012.00039
  25. Lijnen HR, Maquoi E, Demeulemeester D, et al. Modulation of fibrinolytic and gelatinolytic activity during adipose tissue development in a mouse model of nutritionally induced obesity. Thromb Haemost. 2002;88(2):345–353. doi: 10.1055/s-0037-1613208
  26. Gummesson A, Hägg D, Olson FJ, et al. Adipose tissue is not an important source for matrix metalloproteinase-9 in the circulation. Scand J Clin Lab Invest. 2009;69:636–642. doi: 10.3109/00365510902912747
  27. Miksztowicz V, Muzzio ML, Royer M, et al. Increased plasma activity of metalloproteinase 2 in women with metabolic syndrome. Metabolism. 2008;57(11):1493–1496. doi: 10.1016/j.metabol.2008.06.001
  28. Cicero AFG, Derosa G, Manca M, et al. Vascular remodeling and prothrombotic markers in subjects affected by familial combined hyperlipidemia and/or metabolic syndrome in primary prevention for cardiovascular disease. Endothelium. 2007;14(4–5):193–198. doi: 10.1080/10623320701606731
  29. Barylski M, Kowalczyk E, Banach M, et al. Plasma total antioxidant activity in comparison with plasma NO and VEGF levels in patients with metabolic syndrome. Angiology. 2009;60(1): 87–92. doi: 10.1177/0003319708327165
  30. Farzi A, Hagh MF. Association between Vascular Endothelial Growth Factor (VEGF) +405 C/G polymorphism and hypertension in North West of Iran. Int Res J App Bas Sci. 2014;8:122–125.
  31. Buraczynska M, Ksiazek P, Baranowicz-Gaszczyk I, Jozwiak L. Association of the VEGF gene polymorphism with diabetic retinopathy in type 2 diabetes patients. Nephrol Dial Transplant. 2007;22(3):827–832. doi: 10.1093/ndt/gfl641
  32. Jahangiry L, Shojaeizadeh D, Najafi M, et al. ‘Red Ruby’: an interactive web-based intervention for lifestyle modification on metabolic syndrome: a study protocol for a randomized controlled trial. BMC Public Health. 2014;14:748–754. doi: 10.1186/1471-2458-14-748
  33. Jahangiry L, Shojaeizadeh D, Najafi M, et al. ‘Red Ruby’: an interactive web-based intervention for lifestyle modification on metabolic syndrome: a study protocol for a randomized controlled trial. BMC public health. 2014;14(1):748. doi: 10.1186/1471-2458-14-748
  34. Farhangi MA, Jahangiry L, Mirinazhad MM, et al. A web-based interactive lifestyle modification program improves lipid profile and serum adiponectin concentrations in patients with metabolic syndrome: the “Red Ruby” study. Int J Diab Dev C. 2015;37:21–30. doi: 10.1007/s13410-015-0395-z
  35. Mirinazhad MM, Farhangi MA, Jahangiri L, Yaghoubi A. Serum adiponectin concentrations in relation to lipid proffle, anthropometric variables and insulin resistance in patients with metabolic syndrome. Malay J Nutr. 2014;20:283–289.
  36. Douvaras P, Antonatos DG, Kekou K, et al. Association of VEGF gene polymorphisms with the development of heart failure in patients after myocardial infarction. Cardiology. 2009;114(1):11–18. doi: 10.1159/000210189
  37. Miller SA, Dykes DD, Polesky HFRN. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215–1219. doi: 10.1093/nar/16.3.1215
  38. Awata T, Inoue K, Kurihara S, et al. A common polymorphism in the 5'-untranslated region of the VEGF gene is associated with diabetic retinopathy in type 2 diabetes. Diabetes. 2002;51(5):1635–1639. doi: 10.2337/diabetes.51.5.1635
  39. Kowalski J, Sliwczyńska-Rodziewicz D, Kowalczyk E, et al. Plasma nitric oxide and vascular endothelial growth factor levels in patients with metabolic syndrome and co-existing vascular complications. Pol Merkur Lekarski. 2011;30:249–252.
  40. Altinkaya SO, Ugur M, Ceylaner G, et al. Vascular endothelial growth factor +405 C/G polymorphism is highly associated with an increased risk of endometriosis in Turkish women. Arch Gynecol Obstet. 2011;283:267–272. doi: 10.1007/s00404-009-1344-1
  41. Kim OkJ, Hong SH, Oh SH, et al. Association between VEGF polymorphisms and homocysteine levels in patients with ischemic stroke and silent brain infarction. Stroke. 2011;42(9):2393–2402. doi: 10.1161/STROKEAHA.110.607739
  42. Huez I, Bornes S, Bresson D, et al. New vascular endothelial growth factor isoform generated by internal ribosome entry site-driven CUG translation initiation. Mol Endocrinol. 2001;15(12):2197–2210. doi: 10.1210/mend.15.12.0738
  43. Vander Meer P, de Boer RA, White HL, et al. The VEGF +405 CC promoter polymorphism is associated with an impaired prognosis in patients with chronic heart failure: a MERIT-HF substudy. J Card Fail. 2005;11(4):279–284. doi: 10.1016/j.cardfail.2004.11.006

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. PCR results for +405 VEGF gene polymorphism. GC: Heterozygous (469 + 195 + 274 bp), GG: Mutant homozygous (274 + 195 bp), CC: Wild homozygous (469 bp). L: 50 bp DNA ladder

Download (65KB)

Copyright (c) 2021 ООО "Эко-Вектор"



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies