Functions of reactive oxygen species in plant cells under normal conditions and during adaptation

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


The review considers the role of reactive oxygen species in the life of a plant cell. At the same time, attention is paid to both the negative aspects of their effect on cellular components (lipid peroxidation, protein carbonylation, and DNA damage) and positive functions (participation in signaling, stress response, and metabolism). The main types of reactive oxygen species and the sites of their generation in the plant cell are considered. It is concluded that reactive oxygen species, which inevitably arise in any aerobic organisms, should be considered as the most important regulator of a large number of plant processes, such as growth, development, metabolism, senescence, and stress reactions. Moreover, if the role of reactive oxygen species in signaling and under stress has been investigated in sufficient detail, the direct metabolic role has been studied relatively poorly, with the exception of lignin polymerization and softening of the cell wall, which indicates the need for further research in this area.

Full Text

Restricted Access

About the authors

Anton E. Shikov

Saint Petersburg State University; All-Russia Research Institute for Agricultural Microbiology

ORCID iD: 0000-0001-7084-0177
SPIN-code: 9195-1728

Postgraduate student

Russian Federation, Saint Petersburg; Pushkin, Saint Petersburg

Tamara V. Chirkova

Saint Petersburg State University

ORCID iD: 0000-0002-2315-0816
SPIN-code: 9064-4412

Dr. Sci. (Biol.), Professor

Russian Federation, Saint Petersburg

Vladislav V. Yemelyanov

Saint Petersburg State University; National Research University Higher School of Economics

Author for correspondence.
ORCID iD: 0000-0003-2323-5235
SPIN-code: 9460-1278

Cand. Sci. (Biol.), Associate Professor

Russian Federation, Saint Petersburg; Moscow


  1. Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006;141(2): 312–322. doi: 10.1104/pp.106.077073
  2. Del Río LA. ROS and RNS in plant physiology: An overview. J Exp Bot. 2015;66(10):2827–2837. doi: 10.1093/jxb/erv099
  3. Krieger-Liszkay A. Singlet oxygen production in photosynthesis. J Exp Bot. 2005;56(411):337–346. doi: 10.1093/jxb/erh237
  4. Janků M, Luhová L, Petřivalský M. On the origin and fate of reactive oxygen species in plant cell compartments. Antioxidants. 2019;8(4):105. doi: 10.3390/antiox8040105
  5. Keren N, Gong H, Ohad I. Oscillations of Reaction Center II-D1 protein degradation in vivo induced by repetitive light flashes: Correlation between the level of RCII-Q-Band protein degradation in low light. J Biol Chem. 1995;270(2):806–814. doi: 10.1074/jbc.270.2.806
  6. Zolla L, Rinalducci S. Involvement of active oxygen species in degradation of light-harvesting proteins under light stresses. Biochemistry. 2002;41(48):14391–14402. doi: 10.1021/bi0265776
  7. Strand Å, Asami T, Alonso J, et al. Chloroplast to nucleus communication triggered by accumulation of Mg-protoporphyrin IX. Nature. 2003;421:79–83. doi: 10.1038/nature01204
  8. Valko M, Morris H, Cronin M. Metals, toxicity and oxidative stress. Curr Med Chem. 2005;12(10):1161–1208. doi: 10.2174/0929867053764635
  9. Gechev TS, Van Breusegem F, Stone JM, et al. Reactive oxygen species as signals that modulate plant stress responses and programmed cell death. BioEssays. 2006;28(11):1091–1101. doi: 10.1002/bies.20493
  10. Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006;141(2):391–396. doi: 10.1104/pp.106.082040
  11. Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: Signaling, acclimation, and practical implications. Antioxid Redox Signal. 2009;11(4):861–905. doi: 10.1089/ars.2008.2177
  12. Navrot N, Rouhier N, Gelhaye E, Jacquot JP. Reactive oxygen species generation and antioxidant systems in plant mitochondria. Physiol Plant. 2007;129(1):185–195. doi: 10.1111/j.1399-3054.2006.00777.x
  13. Taylor NL, Tan YF, Jacoby RP, Millar AH. Abiotic environmental stress induced changes in the Arabidopsis thaliana chloroplast, mitochondria and peroxisome proteomes. J Proteomics. 2009;72(3):367–378. doi: 10.1016/j.jprot.2008.11.006
  14. Quan LJ, Zhang B, Shi WW, Li HY. Hydrogen peroxide in plants: A versatile molecule of the reactive oxygen species network. J Integr Plant Biol. 2008;50(1):2–18. doi: 10.1111/j.1744–7909.2007.00599.x
  15. Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. 2014;2:53. doi: 10.3389/fenvs.2014.00053
  16. Kawano Y, Kaneko-Kawano T, Shimamoto K. Rho family GTPase-dependent immunity in plants and animals. Front Plant Sci. 2014;5:522. doi: 10.3389/fpls.2014.00522
  17. Kärkönen A, Kuchitsu K. Reactive oxygen species in cell wall metabolism and development in plants. Phytochemistry. 2015;112: 22–32. doi: 10.1016/j.phytochem.2014.09.016
  18. Schmitt FJ, Renger G, Friedrich T, et al. Reactive oxygen species: Re-evaluation of generation, monitoring and role in stress-signaling in phototrophic organisms. Biochim Biophys Acta Bioenerg. 2014;1837(6):835–848. doi: 10.1016/j.bbabio.2014.02.005
  19. Choudhury S, Panda P, Sahoo L, Panda SK. Reactive oxygen species signaling in plants under abiotic stress. Plant Signal Behav. 2013;8(4): e23681. doi: 10.4161/psb.23681
  20. Petrov VD, Van Breusegem F. Hydrogen peroxide — a central hub for information flow in plant cells. AoB PLANTS. 2012;2012: pls014. doi: 10.1093/aobpla/pls014
  21. Sandalio LM, Romero-Puertas MC. Peroxisomes sense and respond to environmental cues by regulating ROS and RNS signalling networks. Ann Bot. 2015;116(4):475–485. doi: 10.1093/aob/mcv074
  22. Goyer A, Johnson TL, Olsen LJ, et al. Characterization and metabolic function of a peroxisomal sarcosine and pipecolate oxidase from Arabidopsis. J Biol Chem. 2004;279(17):16947–16953. doi: 10.1074/jbc.M400071200
  23. Byrne RS, Hänsch R, Mendel RR, Hille R. Oxidative half-reaction of Arabidopsis thaliana sulfite oxidase: Generation of superoxide by a peroxisomal enzyme. J Biol Chem. 2009;284(51):35479–35484. doi: 10.1074/jbc.M109.067355
  24. Smirnoff N, Arnaud D. Hydrogen peroxide metabolism and functions in plants. New Phytol. 2019;221(3):1197–1214. doi: 10.1111/nph.15488
  25. Qi J, Wang J, Gong Z, Zhou JM. Apoplastic ROS signaling in plant immunity. Curr Opin Plant Biol. 2017;38:92–100. doi: 10.1016/j.pbi.2017.04.022
  26. Veitch NC. Structural determinants of plant peroxidase function. Phytochem Rev. 2004;3(1–2):3–18. doi: 10.1023/B: PHYT.0000047799.17604.94
  27. Angelini R, Cona A, Federico R, et al. Plant amine oxidases “on the move”: An update. Plant Physiol Biochem. 2010;48(7): 560–564. doi: 10.1016/j.plaphy.2010.02.001
  28. Planas-Portell J, Gallart M, Tiburcio AF, Altabella T. Copper-containing amine oxidases contribute to terminal polyamine oxidation in peroxisomes and apoplast of Arabidopsis thaliana. BMC Plant Biol. 2013;13:109. doi: 10.1186/1471-2229-13-109
  29. Davidson RM, Reeves PA, Manosalva PM, Leach JE. Germins: A diverse protein family important for crop improvement. Plant Sci. 2009;177(6):499–510. doi: 10.1016/j.plantsci.2009.08.012
  30. Lane BG. Oxalate oxidases and differentiating surface structure in wheat: Germins. Biochem J. 2000;349(1):309–321. doi: 10.1042/0264-6021:3490309
  31. Foyer CH, Noctor G. Ascorbate and glutathione: The heart of the Redox hub. Plant Physiol. 2011;155(1):2–18. doi: 10.1104/pp.110.167569
  32. Dat J, Vandenabeele S, Vranová E, et al. Dual action of the active oxygen species during plant stress responses. Cell Mol Life Sci. 2000;57(5):779–795. doi: 10.1007/s000180050041
  33. Sharma P, Jha AB, Dubey RS, Pessarakli M. Reactive oxygen species, oxidative damage, and antioxidative defense mechanism in plants under stressful conditions. J Bot. 2012;2012:217037. doi: 10.1155/2012/217037
  34. Gill SS, Tuteja N. Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem. 2010;48(12):909–930. doi: 10.1016/j.plaphy.2010.08.016
  35. Anjum NA, Sofo A, Scopa A, et al. Lipids and proteins – major targets of oxidative modifications in abiotic stressed plants. Environ Sci Pollut Res. 2015;22(6):4099–4121. doi: 10.1007/s11356-014-3917-1
  36. Farmer EE, Mueller MJ. ROS-mediated lipid peroxidation and RES-activated signaling. Annu Rev Plant Biol. 2013;64:429–450. doi: 10.1146/annurev-arplant-050312-120132
  37. Schneider C, Porter NA, Brash AR. Routes to 4-hydroxynonenal: Fundamental issues in the mechanisms of lipid peroxidation. J Biol Chem. 2008;283(23):15539–15543. doi: 10.1074/jbc.R800001200
  38. Rodriguez Milla MA, Maurer A, Huete AR, Gustafson JP. Glutathione peroxidase genes in Arabidopsis are ubiquitous and regulated by abiotic stresses through diverse signaling pathways. Plant J. 2003;36(5):602–615. doi: 10.1046/j.1365–313X.2003.01901.x
  39. Timperio AM, Egidi MG, Zolla L. Proteomics applied on plant abiotic stresses: Role of heat shock proteins (HSP). J Proteomics. 2008;71(4):391–411. doi: 10.1016/j.jprot.2008.07.005
  40. Johansson E, Olsson O, Nyström T. Progression and specificity of protein oxidation in the life cycle of Arabidopsis thaliana. J Biol Chem. 2004;279(21):22204–22208. doi: 10.1074/jbc.M402652200
  41. Davies MJ. The oxidative environment and protein damage. Biochim Biophys Acta Proteins Proteom. 2005;1703(2):93–109. doi: 10.1016/j.bbapap.2004.08.007
  42. Møller IM, Jensen PE, Hansson A. Oxidative modifications to cellular components in plants. Ann Rev Plant Biol. 2007;58:459–481. doi: 10.1146/annurev.arplant.58.032806.103946
  43. Xu G, Chance MR. Radiolytic modification and reactivity of amino acid residues serving as structural probes for protein footprinting. Anal Chem. 2005;77(14):4549–4555. doi: 10.1021/ac050299+
  44. Sweetlove LJ, Heazlewoo JL, Herald V, et al. The impact of oxidative stress on Arabidopsis mitochondria. Plant J. 2002;32(6): 891–904. doi: 10.1046/j.1365-313x.2002.01474.x
  45. Tan Y-F, O’Toole N, Taylor NL, Millar AH. Divalent metal ions in plant mitochondria and their role in interactions with proteins and oxidative stress-induced damage to respiratory function. Plant Physiol. 2010;152(2):747–761. doi: 10.1104/pp.109.147942
  46. Roldán-Arjona T, Ariza RR. Repair and tolerance of oxidative DNA damage in plants. Mutat Res Rev Mutat Res. 2009;681(2–3):169–179. doi: 10.1016/j.mrrev.2008.07.003
  47. Wauchope OR, Mitchener MM, Beavers WN, et al. Oxidative stress increases M1dG, a major peroxidation-derived DNA adduct, in mitochondrial DNA. Nucleic Acids Res. 2018;46(7):3458–3467. doi: 10.1093/nar/gky089
  48. Noctor G, Mhamdi A, Foyer CH. The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol. 2014;164(4):1636–1648. doi: 10.1104/pp.113.233478
  49. Hernández JA, Jiménez A, Mullineaux P, Sevilla F. Tolerance of pea (Pisum sativum L.) to long-term salt stress is associated with induction of antioxidant defences. Plant Cell Environ. 2000;23(8): 853–862. doi: 10.1046/j.1365–3040.2000.00602.x
  50. Vinit-Dunand F, Epron D, Alaoui-Sossé B, Badot PM. Effects of copper on growth and on photosynthesis of mature and expanding leaves in cucumber plants. Plant Sci. 2002;163(1):53–58. doi: 10.1016/S0168–9452(02)00060–2
  51. Logan BA, Kornyeyev D, Hardison J, Holaday AS. The role of antioxidant enzymes in photoprotection. Photosynth Res. 2006;88(2): 119–132. doi: 10.1007/s11120-006-9043-2
  52. Gao Q, Zhang L. Ultraviolet-B-induced oxidative stress and antioxidant defense system responses in ascorbate-deficient vtc1 mutants of Arabidopsis thaliana. J Plant Physiol. 2008;165(2):138–148. doi: 10.1016/j.jplph.2007.04.002
  53. Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 2012;35(2): 259–270. doi: 10.1111/j.1365-3040.2011.02336.x
  54. Radwan DEM, Fayez KA, Mahmoud SY, Lu G. Modifications of antioxidant activity and protein composition of bean leaf due to bean yellow mosaic virus infection and salicylic acid treatments. Acta Physiol Plant. 2010;32(5):891–904. doi: 10.1007/s11738-010-0477-y
  55. Sasaki-Sekimoto Y, Taki N, Obayashi T, et al. Coordinated activation of metabolic pathways for antioxidants and defence compounds by jasmonates and their roles in stress tolerance in Arabidopsis. Plant J. 2005;44(4):653–668. doi: 10.1111/j.1365–313X.2005.02560.x
  56. Liu Y, Ren D, Pike S, et al. Chloroplast-generated reactive oxygen species are involved in hypersensitive response-like cell death mediated by a mitogen-activated protein kinase cascade. Plant J. 2007;51(6):941–954. doi: 10.1111/j.1365-313X.2007.03191.x
  57. Kennedy RA, Rumpho ME, Fox TC. Anaerobic metabolism in plants. Plant Physiol. 1992;100(1):1–6. doi: 10.1104/pp.100.1.1
  58. Chirkova TV, Novitskaya LO, Blokhina OB. Perekisnoe okislenie lipidov i aktivnost’ antioksidantnykh sistem pri anoksii u rastenii s raznoi ustoichivost’yu k nedostatku kisloroda. Russian Journal of Plant Physiology. 1998;45(1):65–73. (In Russ.)
  59. Chirkova T, Yemelyanov V. The study of plant adaptation to oxygen deficiency in Saint Petersburg University. Biol Commun. 2018:63(1):17–31. doi: 10.21638/spbu03.2018.104
  60. Shikov AE, Chirkova TV, Yemelyanov VV. Post-anoxia in plants: reasons, consequences, and possible mechanisms. Russian Journal of Plant Physiology. 2020;67(1):50–66. (In Russ.) doi: 10.31857/S0015330320010200
  61. Devanathan S, Erban A, Perez-Torres R, et al. Arabidopsis thaliana glyoxalase 2–1 is required during abiotic stress but is not essential under normal plant growth. PLoS ONE. 2014;9(4):e95971. doi: 10.1371/journal.pone.0095971
  62. Blokhina O, Virolainen E, Fagerstedt KV, et al. Antioxidant status of anoxia-tolerant and -intolerant plant species under anoxia and reaeration. Physiol Plant. 2000;109(4):396–403. doi: 10.1034/j.1399-3054.2000.100405.x
  63. Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. J Exp Bot. 2014:65(5):1229–1240. doi: 10.1093/jxb/ert375
  64. Huang H, Ullah F, Zhou DX, et al. Mechanisms of ROS regulation of plant development and stress responses. Front Plant Sci. 2019;10:800. doi: 10.3389/fpls.2019.00800
  65. Van Breusegem F, Dat JF. Reactive oxygen species in plant cell death. Plant Physiol. 2006;141(2):384–390. doi: 10.1104/pp.106.078295
  66. Petrov V, Hille J, Mueller-Roeber B, Gechev TS. ROS-mediated abio¬tic stress-induced programmed cell death in plants. Front Plant Sci. 2015;6:69. doi: 10.3389/fpls.2015.00069
  67. Apel K, Hirt H. Reactive Oxygen Species: Metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol. 2004;55:373–399. doi: 10.1146/annurev.arplant.55.031903.141701
  68. Mittler R, Vanderauwera S, Gollery M, Van Breusegem F. Reactive oxygen gene network of plants. Trends Plant Sci. 2004;9(10): 490–498. doi: 10.1016/j.tplants.2004.08.009
  69. Vandenabeele S, Vanderauwera S, Vuylsteke M, et al. Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J. 2004;39(1):45–58. doi: 10.1111/j.1365-313X.2004.02105.x
  70. Pnueli L, Liang H, Rozenberg M, Mittler R. Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. Plant J. 2003;34(2):187–203. doi: 10.1046/j.1365-313X.2003.01715.x
  71. Choudhury FK, Rivero RM, Blumwald E, Mittler R. Reactive oxygen species, abiotic stress and stress combination. Plant J. 2017;90(5):856–867. doi: 10.1111/tpj.13299
  72. Steinhorst L, Kudla J. Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol. 2013;163(2):471–485. doi: 10.1104/pp.113.222950
  73. Zhang X, Dong FC, Gao JF, Song CP. Hydrogen peroxide-induced changes in intracellular pH of guard cells precede stomatal closure. Cell Res. 2001;11:37–43. doi: 10.1038/
  74. Wang KL, Li H, Ecker JR. Ethylene biosynthesis and signaling networks. Plant Cell. 2002;14(1): S131–152. doi: 10.1105/tpc.001768
  75. Ouaked F, Rozhon W, Lecourieux D, Hirt H. A MAPK pathway mediates ethylene signaling in plants. EMBO J. 2003;22(6):1282–1288. doi: 10.1093/emboj/cdg131
  76. Tripathy BC, Oelmüller R. Reactive oxygen species generation and signaling in plants. Plant Signal Behav. 2012;7(12):1621–1633. doi: 10.4161/psb.22455
  77. Waszczak C, Carmody M, Kangasjärvi J. Reactive oxygen species in plant signaling. Annu Rev Plant Biol. 2018;69:209–236. doi: 10.1007/978-3-642-00390-5
  78. Mullineaux PM, Baker NR. Oxidative stress: Antagonistic signaling for acclimation or cell death? Plant Physiol. 2010;154(2):521–525. doi: 10.1104/pp.110.161406
  79. Viola IL, Guttlein LN, Gonzalez DH. Redox modulation of plant developmental regulators from the class I TCP transcription factor family. Plant Physiol. 2013;162(3):1434–1447. doi: 10.1104/pp.113.216416
  80. Livanos P, Galatis B, Quader H, Apostolakos P. Disturbance of reactive oxygen species homeostasis induces atypical tubulin polymer formation and affects mitosis in root-tip cells of Triticum turgidum and Arabidopsis thaliana. Cytoskeleton. 2012;69(1):1–21. doi: 10.1002/cm.20538
  81. Daneva A, Gao Z, Van Durme M, Nowack MK. Functions and regulation of programmed cell death in plant development. Annu Rev Cell Dev Biol. 2016;32:441–468. doi: 10.1146/annurev-cellbio-111315-124915
  82. Yi J, Moon S, Lee Y-S, et al. Defective Tapetum Cell Death 1 (DTC1) regulates ros levels by binding to metallothionein during tapetum degeneration. Plant Physiol. 2016;170(3):1611–1623. doi: 10.1104/pp.15.01561
  83. Ishibashi Y, Aoki N, Kasa S, et al. The interrelationship between abscisic acid and reactive oxygen species plays a key role in barley seed dormancy and germination. Front Plant Sci. 2017;8:275. doi: 10.3389/fpls.2017.00275
  84. Bahin E, Bailly C, Sotta B, et al. Crosstalk between reactive oxygen species and hormonal signalling pathways regulates grain dormancy in barley. Plant Cell Environ. 2011;34(6):980–993. doi: 10.1111/j.1365-3040.2011.02298.x
  85. Tsukagoshi H, Busch W, Benfey PN. Transcriptional regulation of ROS controls transition from proliferation to differentiation in the root. Cell. 2010;143(4):606–616. doi: 10.1016/j.cell.2010.10.020
  86. Zeng J, Dong Z, Wu H, et al. Redox regulation of plant stem cell fate. EMBO J. 2017;36(19):2844–2855. doi: 10.15252/embj.201695955
  87. Mangano S, Denita-Juarez SP, Choi H-S, et al. Molecular link between auxin and ROS-mediated polar growth. Proc Natl Acad Sci USA. 2017;114(20):5289–5294. doi: 10.1073/pnas.1701536114
  88. Schippers JH, Foyer CH, van Dongen JT. Redox regulation in shoot growth, SAM maintenance and flowering. Curr Opin Plant Biol. 2016;29:121–128. doi: 10.1016/j.pbi.2015.11.009
  89. Quon T, Lampugnani ER, Smyth DR. PETAL LOSS and ROXY1 interact to limit growth within and between sepals but to promote petal initiation in Arabidopsis thaliana. Front Plant Sci. 2017;8:152. doi: 10.3389/fpls.2017.00152
  90. Lassig R, Gutermuth T, Bey TD, et al. Pollen tube NAD(P)H oxidases act as a speed control to dampen growth rate oscillations during polarized cell growth. Plant J. 2014;78(1):94–106. doi: 10.1111/tpj.12452
  91. Richards SL, Wilkins KA, Swarbreck SM, et al. The hydroxyl radical in plants: From seed to seed. J Exp Bot. 2015;66(1):37–46. doi: 10.1093/jxb/eru398
  92. Valerio L, De Meyer M, Penel C, Dunand C. Expression analysis of the Arabidopsis peroxidase multigenic family. Phytochemistry. 2004;65(10):1331–1342. doi: 10.1016/j.phytochem.2004.04.017
  93. Shigeto J, Itoh Y, Hirao S, et al. Simultaneously disrupting AtPrx2, AtPrx25 and AtPrx71 alters lignin content and structure in Arabidopsis stem. J Integr Plant Biol. 2015;57(4):349–356. doi: 10.1111/jipb.12334
  94. Laitinen T, Morreel K, Delhomme N, et al. A key role for apoplastic H2O2 in norway spruce phenolic metabolism. Plant Physiol. 2017;174(3):1449–1475. doi: 10.1104/pp.17.00085
  95. Lee Y, Rubio MC, Alassimone J, Geldner N. A mechanism for localized lignin deposition in the endodermis. Cell. 2013;153(2):402–412. doi: 10.1016/j.cell.2013.02.045
  96. Xiong J, Yang Y, Fu G, Tao L. Novel roles of hydrogen peroxide (H2O2) in regulating pectin synthesis and demethylesterification in the cell wall of rice (Oryza sativa) root tips. New Phytol. 2015;206(1): 118–126. doi: 10.1111/nph.13285
  97. Denness L, McKenna JF, Segonzac C, et al. Cell wall damage-induced lignin biosynthesis is regulated by a reactive oxygen species- and jasmonic acid-dependent process in Arabidopsis. Plant Physiol. 2011;156(3):1364–1374. doi: 10.1104/pp.111.175737
  98. Rosenwasser S, Rot I, Sollner E, et al. Organelles contribute differentially to reactive oxygen species-related events during extended darkness. Plant Physiol. 2011;156(1):185–201. doi: 10.1104/pp.110.169797
  99. Zimmermann P, Heinlein C, Orendi G, Zentgraf U. Sene¬scence-specific regulation of catalases in Arabidopsis tha¬liana (L.) Heynh. Plant Cell Environ. 2006;29(6):1049–1060. doi: 10.1111/j.1365-3040.2005.01459.x
  100. Mhamdi A, Van Breusegem F. Reactive oxygen species in plant development. Development. 2018;145(15): dev164376. doi: 10.1242/dev.164376

Supplementary files

Supplementary Files
1. Fig 1. Scheme of the main sources of generation of reactive oxygen species in a plant cell. DAO — diamine oxidase, PAO — polyamine oxidase, PDI — protein disulfide isomerase, SOD — superoxide dismutase, ETC — electron transport chain, PSII — photosystem I, PSII — photosystem II, RBOH — respiratory burst oxidase homologs. Explanations in the text

Download (226KB)
2. Fig 2. Generalized scheme of the role of reactive oxygen species in plant life. ROS, reactive oxygen species; TF, transcription factors. Explanations in the text

Download (125KB)
3. Fig. 1. Scheme of the main sources of ROS generation in plant cell. List of abbreviations: DAO – diamine oxidase, PAO – polyamine oxidase, PDI – protein disulfide isomerase, SOD – superoxide dismutase, ETC – electron transport chain, PSI – photosystem I, PSII – photosystem II, RBOH – respiratory burst oxidase homologs. In chloroplast, PSII is the main source of singlet oxygen and superoxide; the latter is also formed in photosystem I; subsequently, superoxide is neutralized by SOD to hydrogen peroxide. In mitochondria, superoxide appears in respiratory complexes I & III, where it is also neutralized to peroxide by SOD. Superoxide can be formed in the endoplasmic reticulum in the ETC with cytochrome P450, and hydrogen peroxide is formed by the PDI. PAOs catalyze generation of hydrogen peroxide in the cytoplasm, vacuole and cell wall. Besides, the activity of aldehyde oxidases in the cytosol also leads to the formation of superoxide. RBOH NADPH-oxidases of plasma lemma are a source of superoxide in the cell wall, which dismutes to hydrogen peroxide; peroxide can also appear due to the activity of class III peroxidases, amine oxidases, and germin-like oxalate oxidases. Peroxisomal membrane-associated ETCs (NAD(P)H-oxidases) generate superoxide, it can also be formed in peroxisomal lumen by xanthine oxidoreductase. Hydrogen peroxide is generated in peroxisome by β-oxidation of fatty acids (acyl-CoA oxidase), phytohormone catabolism, and activity of glycolate oxidase, uricase, sarcosine oxidase and sulfite oxidase. Singlet oxygen is also formed in all membranes during lipid peroxidation during the decomposition of peroxyradicals of fatty acid residues of lipids

Download (194KB)
4. Fig. 2. Generalized scheme of the role of ROS in plant life. See explanations in the text

Download (138KB)

Copyright (c) 2021 ООО "Эко-Вектор"

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies