Genotoxic safety of synthetic food colours. Review

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Food additives and food colours, in particular, are becoming more widespread in all countries. The review is devoted to a least studied problem of synthetic food colours safety assessment approved for use in the Russian Federation – to an analysis of their genotoxic effect (mechanisms, methods of determination and results of studies on various living objects). Results half-century study of the synthetic food colours genotoxicity demonstrated among studied colours there were none of them for which unambiguous research results were obtained, what allows us to conclude about the possibility of their real mutagenic and/or carcinogenic danger. It is shown that the problem of dose range selection for genotoxicity test, the associated problem of impurities control as well as approaches to test systems and selection of test objects are the key to ensure genetic/carcinogenic safety of food colours. These problems are aggravated by the fact that in the Russian Federation there is no any unified system for food colours genetic safety assessment. So, the main task of this publication is to prove an urgency of this system elaboration and to outline a group of main problems associated therewith.

Full Text

Restricted Access

About the authors

Valentina V. Yurchenko

Centre for Strategic Planning and Management of Biomedical Health Risks

Email: VYurchenko@cspmz.ru
SPIN-code: 4225-7898
Scopus Author ID: 14007498000

Cand. Sci. (Med.), Senior Researcher

Russian Federation, Moscow

Faina I. Ingel

Centre for Strategic Planning and Management of Biomedical Health Risks

Email: FIngel@cspmz.ru
ORCID iD: 0000-0002-2262-6800
SPIN-code: 1013-7006
Scopus Author ID: 57205760994
ResearcherId: C-8899-2014

Dr. Sci. (Biol.), Main Researcher

Russian Federation, Moscow

Lyudmila V. Akhaltseva

Centre for Strategic Planning and Management of Biomedical Health Risks

Email: LAhalceva@cspmz.ru
ORCID iD: 0000-0002-3619-3858
SPIN-code: 7049-0003
Scopus Author ID: 57138478700
ResearcherId: I-8204-2018

Cand. Sci. (Biol.), Senior Researcher

Russian Federation, Moscow

Mariya A. Konyashkina

Centre for Strategic Planning and Management of Biomedical Health Risks

Author for correspondence.
Email: MKonyashkina@cspmz.ru
ORCID iD: 0000-0002-8319-1329
SPIN-code: 7559-9045
Scopus Author ID: 8142882800

Cand. Sci. (Biol.), Research Associate

Russian Federation, Moscow

Nadezda A. Yurtseva

Centre for Strategic Planning and Management of Biomedical Health Risks

Email: NYUrceva@cspmz.ru
ORCID iD: 0000-0001-5031-2916
SPIN-code: 8988-6769
Scopus Author ID: 12765611200

junior researcher

Russian Federation, Moscow

Tatyana A. Nikitina

Centre for Strategic Planning and Management of Biomedical Health Risks

Email: TNikitina@cspmz.ru
ORCID iD: 0000-0003-0866-5990
SPIN-code: 9106-5076

biologist

Russian Federation, Moscow

Elena K. Krivtsova

Centre for Strategic Planning and Management of Biomedical Health Risks

Email: EKrivcova@cspmz.ru
SPIN-code: 5297-2306

Research Associate

Russian Federation, Moscow

References

  1. Federal’nyi tsentr gigieny i ehpidemiologii Rospotrebnadzora. Otsenka toksichnosti i opasnosti khimicheskikh veshchestv i ikh smesei dlya zdorov’ya cheloveka: rukovodstvo. Moscow: Federal’nyi tsentr gigieny i ehpidemiologii Rospotrebnadzora; 2014. 639 p. (In Russ.)
  2. Federal’nyi tsentr gigieny i ehpidemiologii Rospotrebnadzora. Otsenka mutagennoi aktivnosti pestitsidov: metodicheskie ukazaniya. Moscow: Federal’nyi tsentr gigieny i ehpidemiologii Rospotrebnadzora; 2016. 49 p. (In Russ.)
  3. Mironov AN, editor. Rukovodstvo po provedeniyu doklinicheskikh issledovanii lekarstvennykh sredstv. Chast’ pervaya. Moscow: Grif i K., 2012. 944 p. (In Russ.)
  4. Federal’nyi tsentr gigieny i ehpidemiologii Rospotrebnadzora. Toksikologo-gigienicheskaya otsenka bezopasnosti nano-materialov: metodicheskie ukazaniya. Moscow: Federal’nyi tsentr gigieny i ehpidemiologii Rospotrebnadzora; 2009. 35 p. (In Russ.)
  5. SaNPIN2.3.2.1293-03 Gigienicheskie trebovaniya po primeneniyu pishchevykh dobavok Ministerstvo zdravookhraneniya Rossiiskoi Federatsii. Postanovlenie ot 18 aprelya 2003 goda № 59. Glavnyi Gosudarstvennyi sanitarnyi vrach Rossiiskoi Federatsii. O vvedenii v deistvie sanitarno-ehpidemiologicheskikh pravil i normativov (s izmeneniyami na 23 dekabrya 2010 goda. Prilozhenie 8). (In Russ.)
  6. Brown JP. Reduction of polymeric azo and nitro dyes by intestinal bacteria. Appl Environ Microbiol. 1981;41:1283–1286. doi: 10.1128/aem.41.5.1283-1286.1981
  7. International Agency for Research on Cancer [internet]. IARC monographs on the identification of carcinogenic hazards to humans [cited: 30 April 2020]. Available From: https://monographs.iarc.fr/list-of-classifications
  8. Combes RD, Haveland-Smith RB. A review of the genotoxicity of food, drug and cosmetic colours and other azo, triphenylmethane and xantene dyes. Mutat Res. 1982;98(2):101–243. doi: 10.1016/0165-1110(82)90015-x
  9. Roxon JJ, Ryan AJ, Wright SE. Enzymatic reduction of tartrazine by Proteus vulgaris from rats. Food Cosmet Toxicol. 1967;5:645–656. doi: 10.1016/s0015-6264(67)83216-4
  10. Scheline RR, Nygaard RT, Longberg DF. Ensymatic reduction of the azo dye, acid yellow by extracts of Streptococcus faecalis isolated from rat intestine. Food Cosmet Toxicol. 1970;8(1):55–58. doi: 10.1016/s0015-6264(70)80223-1
  11. Chung KT, Stevens SE. The reduction of azo dyes by the intestinal microflora. Crit Rev Microbiol. 1992;18(3):175–190. doi: 10.3109/10408419209114557
  12. Hartman CP, Fulk GE, Andrevs W. Azo reduction of tripan blue to a known carcinogen by a cell-free extract of a human intestinal anaerobe. Mutat Res. 1978;58(2–3):125–132. doi: 10.1016/0165-1218(78)90001-0
  13. Walker R, Gingell R, Murrells DF. Mechanism of azo reduction by Streptococcus faecalis. I. Optimization of assay conditions. Xenobiotics. 1971;1(3):221–229. doi: 10.3109/00498257109033171
  14. Brown JP. Role of gut bacterial flora in nutrition and health: a review of recent advances in bacteriological techniques, metabolism and factors affecting flora composition. Crit. Rev. Food Sci Nutr. 1977;8(3):229–336. doi: 10.1080/10408397709527224
  15. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS) Scientific Opinion on the re-evaluation of Brilliant Blue FCF (E133) as a food additive. EFSA Journal. 2010;8(11):1853.
  16. Brown JP, Dorsky A, Enderlin FE, et al. Synthesis of 14C-labeled FD&C Blue No. 1 (Brilliant Blue FCF) and its intestinal absorbtion and metabolic fate in rats. Food Cosmet Toxicol. 1980;18(1):1–5. doi: 10.1016/0015-6264(80)90002-4
  17. Philips JP, Mendis D, Eason CT, Gangolli ST. The metabolic disposition of 14C-labeled Green S and Brilliant Blue FCF in the rat, mouse and guinea pig. Food Cosmet Toxicol. 1980;18(5):7–13. doi: 10.1016/s0278-6915(82)80055-0
  18. Wahlstrom B, Blennow G, Krantz C. Studies on the fate of quinoline yellow in the rat. Food Cosmet Toxicol. 1979;17(1):1–3. doi: 10.1016/0015-6264(79)90150-0
  19. Amchova P, Kotolova H, Ruda-Kucerova J. Health safety issues of synthetic food colorants. Regulatory Toxicology and Pharmacology. 2015;73(3):914–922. doi: 10.1016/j.yrtph.2015.09.026
  20. Lyarskii PP, Yurchenko VV, Zhurkov VS, Gleiberman SE. Mutagennaya opasnost’ parenteral’nogo postupleniya okisi ehtilena v organizm mlekopitayushchikh. Hygiene and sanitation. 1983;(1):23–26. (In Russ.)
  21. Ishidate M Jr, Sofuni T, Yoshikawa K, et al. Primary mutagenicity screening of food additives currently used in Japan. Food Chem Toxical. 1984;22(8):623–636. doi: 10.1016/0278-6915(84)90271-0
  22. Brown JP, Dietrich PS. Mutagenicity of selected sulfonated azo dyes in the Salmonella/microsome assay: use of aerobic and anaerobic activation procedures. Mutat Res. 1983;116(3–4):305–315. doi: 10.1016/0165-1218(83)90068-x
  23. Kawachi T, Yaha GIT, Kada T, et al. Cooperative programme on short-term assays for carcinogenicity in Japan. IARC Sci Publ. 1980;27:323–330.
  24. Prival MJ, Mitchell VD. Analysis of a method for testing azo dyes for mutagenic activity in Salmonella typhimurium in the presence of flavin mononucleotide and hamster liver S9. Mutat Res. 1982;97(2):103–115. doi: 10.1016/0165-1161(82)90008-5
  25. Prival MJ, Davis VM, Peiperl MD, Bell SJ. Evaluation of azo food dyes for mutagenicity by method using Salmonella typhimurium. Mut Res. 1988;206(2):247–259. doi: 10.1016/0165-1218(88)90168-1
  26. Chung KT, Fulk G, Andrews A. Mutagenicity testing of some commonly used dyes. Appl Environ Microbiol. 1981;42(4):641–648. doi: 10.1128/aem.42.4.641-648.1981
  27. Izbirak A, Sumer S, Diril N. Mutagenicity testing of some azo dyes used as food additives. Microbiyol Bul. 1990;24:48–56.
  28. Pollastrini MT, Barea M, Salas J. Genotoxic study of commercial dyes with tartrazine base in S. typhimurium his- and E. сoli trp-. Rev. Sanid Hig Publ. 1990;64:203–209.
  29. Das A, Mukherjee A. Genotoxicity Testing of the food colours Amaranth and Tartrazine. Int J Hum Genet. 2004;4(4):277–280. doi: 10.1080/09723757.2004.11885906
  30. Karpliuk IA, Volkova NA, Okuneva LA, et al. Mutagenic effect of the food-coloring agents tartrazine and indigo carmine. Voprosy pitaniya. 1984;(2):58–61.
  31. Au W, Hsu TC. Studies on clastogenic effects of biological stains and dyes. Environ Mutagen. 1979;1(1):27–35. doi: 10.1002/em.2860010109
  32. Patterson RM, Butler JS. Tartrazine induced chromosomal aberrations in mammalian cells. Food Chem Toxicol. 1982;20(4): 461–465. doi: 10.1016/s0278-6915(82)80113-0
  33. Hayashi M, Matsui M, Ishii K, Kawasaki M. Data sheet for mutagenicity evaluation of food additives by Ministry of Health Labour and Welfare (FY1979–FY1998). Environ Mutagen Res. 2000;22:27–44.
  34. Sekeroglu Z, Gunes B, Kontas Yedier S, et al. Effects of tartrazine on proliferation and genetic damage in human lymphocytes. Toxicol Mech Methods. 2017;27(5):370–375. doi: 10.1080/15376516.2017.1296051
  35. Floriano JM, da Rosa E, do Amaral QDF, et al. Is tartrazine really safe? In silico and ex vivo toxicological studies in human leukocytes: a question of dose. Toxicol Res (Camb). 2018;7(6):1128–1134. doi: 10.1039/c8tx00034d
  36. Vaidya VG, Godbole NM. Mutagenicity stady of four colours using human leucocyte and mouse micronucleus test systems. Proc Int. Simp. Environ. Agents. Biological Effects. India, Huderabad: Osmanian Univ; 1978.
  37. Haverić A, Inajetović D, Vareškić A, et al. In vitro analysis of tartrazine genotoxicity and cytotoxicity. Genetics & Applications. 2017;1(1):37–43. doi: 10.31383/ga.vol1iss1pp37-43
  38. Swaroop VR, Roy DD, Vijayakumar T. Genotoxicity of Synthetic Food Colorants. J Food Sci Engineering. 2011;1:53–59.
  39. Mpountoukas P, Pantazaki A, Kostareli E, et al. Cytogenetic evaluation and DNA interaction studies of the food colorants amaranth, erythrosine and tartrazine. Food Chem Toxicol. 2010;48(10): 2934–2944. doi: 10.1016/j.fct.2010.07.030
  40. Fischer AB, Müller D, Wellhausen F. Induction of sister chromatid exchanges by food dyes. Environmental Hygiene. 1990;2:38–41. doi: 10.1007/978-3-642-46712-7_9
  41. Soares BM, Araújo TM, Ramos JA, et al. Effects on DNA repair in human lymphocytes exposed to the food dye Tartrazine. Anticancer Research. 2015;35(3):1465–1474.
  42. Durnev AD, Oreshchenko AV, Kulakova AV, Beresten NF. Analysis of cytogenetic activity of food dyes. Biomeditsinskaya Khimiya. 1995;41(5):50–53. (In Russ.)
  43. Giri AK, Das SK, Talukder G, Sharma A. Sister chromatid exchange and chromosome aberrations induced by curcumin and tartrazine on mammalian cells in vivo. Cytobios. 1990;62:111–117.
  44. Hassan GM. Effects of some synthetic coloring additives on DNA damage and chromosomal aberrations of rats. Arab J Biotech. 2010;13(1):13–24.
  45. Bastaki M, Farrell T, Bhusari S, et al. Lack of genotoxicity in vivo for food color additive Tartrazine. Food Chem Toxicol. 2017;105: 278–284. doi: 10.1016/j.fct.2017.04.034
  46. Poul M, Jarry G, Elhkim MO, Poul JM. Lack of genotoxic effect of food dyes amaranth, sunset yellow and tartrazine and their metabolites in the gut micro assay in mice. Food Chem Toxicol. 2009;47: 443–448. doi: 10.1016/j.fct.2008.11.034
  47. Abo-El-Sooud K, Hashem MM, Badr YA, et al. Assessment of hepato-renal damage and genotoxicity induced by long-term exposure to five permitted food additives in rats. Environ Sci Pollut Res Int. 2018;26:26341–26350. doi: 10.1007/s11356-018-2665-z
  48. Khayyat L, Essawy A, Sorour J, Soffar A. Tartrazine induced structural and functional aberrations and genotoxic effects in vivo. Peer J. 2017;23(5): e3041. doi: 10.7717/peerj.3041
  49. Sasaki YF, Kawaguchi S, Ochshita M, et al. The comet assay with 8 mouse organs: results with 39 currently used food additives. Mutat Res. 2002;519(1–2):103–119. doi: 10.1016/s1383-5718(02)00128-6
  50. Kornbrust D, Barfknecht T. Testing of 24 food, drug, cosmetic, and fabric dyes in the in vitro and the in vivo/in vitro rat hepatocyte primary culture/DNA repair assays. Environ Mutagen. 1985;7(1): 101–120. doi: 10.1002/em.2860070106
  51. Tripathy NK, Patnaik KK, Nabi MJ. Genotoxicity of tartrazine studied in two somatic assays of Drosophila melanogaster. Mutat Res. 1989;224(4):479–483. doi: 10.1016/0165-1218(89)90073-6
  52. Kawai K, Furukawa H, Kabasawa Y. Genotoxicity of food yellow No 5 impurities in Drosophila melanogaster. Jpn J Toxicol Environ Health. 1993;39(4):332–335. doi: 10.1248/jhs1956.39.4_332
  53. Roychoudhury A, Giri AK. Effects of certain food dyes on chromosomes of Allium cepa. Mutat Res. 1989;223(3):313–319. doi: 10.1016/0165-1218(89)90125-0
  54. Gomes KS, de Oliveira MGA, de Francisco RSC, et al. Cytotoxicity of food dyes Sunset Yellow (E-110), Bordeaux Red (E-123), and Tatrazine Yellow (E-102) on Allium cepa L. root meristematic cells. Food Sci Technol Campinas. 2013;33(1):218–223. doi: 10.1590/S0101-20612013005000012
  55. Pesnya DS, Romanovsky AV, Prokhorova IM. Investigation of toxic, mitotoxic and mutagenic effects of synthesized food dyes by the Allium test. Yaroslavl Pedagogical Bulletin. 2012;3(3):86–93. (In Russ.)
  56. Luck H, Rickerl E. Food additives and mutagenic effects 6th report examination of the food dyes allowed and first suggested in West Germany for mutagenic effects on Escherichia coli. Z Lebensmittel-Untersuch-Forsch. 1960;112:157–174.
  57. Haveland-Smith RB, Combes RD. Screening of food dyes for genotoxic activity. Food Cosmet Toxicol. 1980;18(3):215–221. doi: 10.1016/0015-6264(80)90097-8
  58. Rafii F, Hall JD, Cerniglia CE. Mutagenicity of azo dyes used in foods, drugs and cosmetics before and after reduction by Clostridium species from the human intestinal tract. Food Chem Toxicol. 1997;35(9):897–901. doi: 10.1016/s0278-6915(97)00060-4
  59. Wever J, Münzner R, Renner HW. Testing of sunset yellow and orange II for genotoxicity in different laboratory animal species. Environ Mol Mutagen. 1989;13(3):271–276. doi: 10.1002/em.2850130311
  60. Sankaranarayanan N, Murthy MS. Testing of some permitted food colors for the induction of gene conversion in diploid yeast. Mutat Res. 1979;67(4):309–314. doi: 10.1016/0165-1218(79)90026-0
  61. Ishidate M, Odashima S. Chromosome tests with 134 compounds on Chinese hamster cells in vitro. A screening test for chemical carcinogens. Mut Res. 1977;48(3–4):337–354. doi: 10.1016/0027-5107(77)90177-4
  62. Abe S, Sasaki M. Chromosome aberrations and sister chromatic exhanges in Chinese hamster cells exposed to vartious chemicals. J Natl Cancer Inst. 1977;58(6):1635–1640. doi: 10.1093/jnci/58.6.1635
  63. Zhurkov VS. Issledovanie mutagennoi aktivnosti lekarstvennykh preparatov i pishchevykh dobavok v kul’ture limfotsitov cheloveka. Russian Journal of Genetics. 1975;11(4):26–30. (In Russ.)
  64. Kus E, Eroglu HE. Genotoxic and cytotoxic effects of Sunset Yellow and Brilliant Blue, colorant food additives, on human blood lymphocytes. Pak J Pharm Sci. 2015;28(1):227–230.
  65. Haverić A, Haverić S, Hadžić M, et al. Genotoxicity and cytotoxicity analysis of curcumin and sunset yellow in human lymphocyte culture. Cell Mol Biol (Noisy-le-grand). 2018;64(3):87–91. doi: 10.14715/cmb/2018.64.3.14
  66. McGregor DB, Brown A, Howgate S, et al. Responses of the L5178Y tk+/tk– mouse lymphoma cell forward mutation assay: III. 72 coded chemicals. Environ Mol Mutagen. 1991;17(3):196–219. doi: 10.1002/em.2850170309
  67. Sayed HM, Fouad D, Ataya FS, et al. The modifying effect of selenium and vitamins A, C, and E on the genotoxicity induced by sunset yellow in male mice. Mutat Res. 2012;744(2):145–153. doi: 10.1016/j.mrgentox.2012.02.003
  68. Westmoreland C, Gatehouse DG. The differential clastogenicity of Solvent Yellow 14 and FD&C Yellow No. 6 in vivo in the rodent micronucleus test (observations on species and tissue specificity). Carcinogenesis. 1991;12(8):1403–1407. doi: 10.1093/carcin/12.8.1403
  69. Yamada M, Honma M. Summarized data of genotoxicity tests for designated food additives in Japan. Genes and Environment. 2018;40(1):1–28. doi: 10.1186/s41021-018-0115-2
  70. Khayyat LI, Essawy AE, Sorour JM, Soffar A. Sunset Yellow and Allura Red modulate Bcl2 and COX2 expression levels and confer oxidative stress-mediated renal and hepatic toxicity in male rats. Peer J. 2018;6: e5689 doi: 10.7717/peerj.5689
  71. Hossain Z, Shukla R, Mandal AKA, Datta SK. Allium test for assessing chromotoxic effects of artificial yellow dye. Cytologia. 2002;67(4):411–415. doi: 10.1508/cytologia.67.411
  72. Dwivedi K, Kumar G. Genetic damage induced by a food coloring dye (Sunset Yellow) on meristematic cells of Brassica campestris L. J Environ Public Health. 2015;2015:1–5. doi: 10.1155/2015/319727
  73. Kumar G, Srivastava N. Genotoxic effects of two commonly used food additives of boric acid and Sunset yellow in root meristems of Trigonella foenum-graecum Iran. J Environ Health Sci Eng. 2011;8(4):361–366.
  74. Garner RC, Nutman CA. Testing of some azo dyes and their reduction products for mutagenicity using Salmonella typhimurium TA 1538. Mutat Res. 1977;44(1):9–19. doi: 10.1016/0027-5107(77)90110-5
  75. Viola M, Nosotti A. Applicazione del test di Ames su alcuni coloranti. Chim Farm. 1978;117:402–415.
  76. Brown PJ, Roehm WG, Brown JR. Mutagenicity testing of certified food colors and related azo, xanthene and triphenylmethane dyes with the Salmonella/microsome system. Mutat. Res. 1978;56:249–271.
  77. Ozaki A, Kitano M, Itoh N, et al. Mutagenicity and DNA-damaging activity of decomposed products of food colours under UV irradiation. Food Chem Toxicol. 1998;36(9):811–817. doi: 10.1016/s0278-6915(98)00039-8
  78. Gubbini L, Cardamone J, Volterra-Veca L, et al. Controllo dell´ effetto mutageno di alcuni coloranti chimici ambientali. Atti Ass. Genet Ital. 1975;20:43–44. (In Ital.)
  79. Khan Ishfaq S, Niamat A, Rabia H, Showkat A. GanieGenotoxic effect of two commonly used food dyes metanil yellow and carmoisine using Allium cepa L. as indicator. Toxicol Rep. 2020;7:370–375. doi: 10.1016/j.toxrep.2020.02.009
  80. Haveland-Smith RB. An evaluation on the genetic effects of some food colours using microbial test systems. Ph D. Thesis. London: CNAA; 1980.
  81. Yamjala K, Meyyanathan Subramania N, Kumar Varmab S, Amborec N. Separation, identification and mutagenic assessment of the photodegradation products of Ponceau 4R (E124) in a beverage. Anal Methods. 2016;8(25):5017–5024. doi: 10.1039/C6AY00716C
  82. Cameron TP, Hughes TJ, Kirby PE, et al. Mutagenic activity of 27 dyes and related chemicals in the Salmonella/microsome and mouse lymphoma TK+/– assays. Mutat Res. 1987;189(3):223–261. doi: 10.1016/0165-1218(87)90056-5
  83. Agarwal K, Mukherjee A, Sharma A. In vivo cytogenetic studies on male mice exposed to Ponceau 4R and beta-carotene. Cytobios. 1993;74(296):23–28.
  84. Ishidate M Jr, Yoshikawa K, Sofuni T. Mutagenicity tests on food additives (series 1) – the collaborative study supported by the Ministry of Health and Welfare of Japan. Mutagen Toxicity. 1980;12:82–90. (In Japan)
  85. EFSA. Statement on Allura Red AC and other sulphonated mono azo dyes authorised as food and feed additives. EFSA J. 2013;11(6):3234. doi: 10.2903/j.efsa.2013.3234
  86. Tsuda S, Murakami M, Matsusaka N, et al. DNA damage induced by Red food dyes orally administrated to pregnant and male mice. Toxicol Sci. 2001;61(1):92–99. doi: 10.1093/toxsci/61.1.92
  87. Shimada C, Kano K, Sasaki YF, et al. Differential colon DNA damage induced by azo food additives between rats and mice. J Toxicol Sci. 2010;35(4):547–554. doi: 10.2131/jts.35.547
  88. Marques GS, Janaína JS, Paula AP. Action of Ponceau 4 R (E-124) food dye on root meristematic cells of Allium cepa. Biol Sci. 2015;37(1):101–106. doi: 10.4025/actascibiolsci.v37i1.23119
  89. Muzzal JM, Cook WL. Mutagenicity test of dyes used in cosmetics with the Salmonella/mammalian-microsome test. Mutat Res. 1979;66(2):181–185. doi: 10.1016/0165-1218(79)90064-8
  90. Fujita H, Sasaki M. Mutagenicity test of food additives with Salmonella typhimurium TA97, TA102 (II). Ann Rep Tokyo Metr Res Lab PH. 1987;38:423–430. (In Japan.)
  91. Jabeen HS, ur Rahman S, Mahmood S, Anwer S. Genotoxicity assessment of amaranth and allura red using Saccharomyces cerevisiae. Bull Environ Contam Toxicol. 2013;90(1):22–26. doi: 10.1007/s00128-012-0870-x
  92. Honma M. Evaluation of the in vivo genotoxicity of Allura Red AC (Food Red No.40). Food Chem Toxicol. 2015;84:270–275. doi: 10.1016/j.fct.2015.09.007
  93. Bastaki M, Farrell T, Bhusari S, et al. Lack of genotoxicity in vivo for food color additive Allura Red. AC Food Chem Toxicol. 2017;105:308–314. doi: 10.1016/j.fct.2017.04.037
  94. Abramsson-Zetterberg L, Ilbäck NG. The synthetic food colouring agent Allura Red AC (E129) is not genotoxic in a flow cytometry-based micronucleus assay in vivo. Food Chem Toxicol. 2013;59:86–89. doi: 10.1016/j.fct.2013.05.047
  95. Macioszek V, Kononowicz A. The evaluation of the genotoxicity of two commonly used food colors: Quinoline Yellow (E104) and Brilliant Black BN (E151). Cell Mol Biol Let. 2004;9(1):107–122.
  96. Auletta AE, Kuzava JM, Parmar AS. Lack of mutagenic activity of a series of food dyes for Salmonella typhimurium. Mutat Res. 1977;56(2):203–206. doi: 10.1016/0027-5107(77)90211-1
  97. Bonin AM, Farquharson JB, Baker RSU. Mutagenicity of arylmethane dyes in Salmonella. Mutat Res. 1981;89(1):21–34. doi: 10.1016/0165-1218(81)90127-0
  98. Masannat YA, Hanby A, Horgan K, Hardie LJ. DNA damaging effects of the dyes used in sentinel node biopsy: Possible implications for clinical practice. J Surg Res. 2009;154(2):234–238. doi: 10.1016/j.jss.2008.07.039
  99. EFSA Panel on Food Additives and Nutrient Sources added to Food (ANS), Scientific Opinion on the re-evaluation of Patent Blue V (E131) as a food additive. EFSA Journal. 2013;11(3):2818–2853. doi: 10.2903/j.efsa.2013.2818
  100. Sarıkaya R, Selvi M, Erkoç F. Evaluation of potential genotoxicity of five food dyes using the somatic mutation and recombination test. Chemosphere. 2012;88(8):974–979. doi: 10.1016/j.chemosphere.2012.03.032
  101. Bonin AM, Baker RS. Mutagenicity testing of some approved food additives with Salmonella microsome assay. Food Technol. 1980;32(12):608–611. doi: 10.1016/0165-1218(79)90064-8
  102. Hayashi M, Kishi M, Sofuni T, Ishidate JR. Micronucleus tests in mice on 39 food additives and eight miscellaneous chemicals. Food Chem Toxicol. 1988;26(6):487–500. doi: 10.1016/0278-6915(88)90001-4
  103. Kaur M, Arora S, Katnoria JK. Evaluation of mutagenic potential of food dye (Apple green). Indian Journal of Science and Technology. 2010;3(12):1208–1209. doi: 10.17485/ijst/2010/v3i12/29863
  104. Price PJ, Suk WA, Freeman AE, et al. In vitro and in vivo indications of carcinogenicity and toxicity of food dyes. Int J Cancer. 1978;21(3):361–367. doi: 10.1002/ijc.2910210318
  105. Angus DS, Baker RSU, Bonin AM, et al. Comparative mutagenicity of two triarylmethane dyes in Salmonella, Saccharomyces and Drosophila. Food Cosmet Toxicol. 1981;19:419–424. doi: 10.1016/0015-6264(81)90444-2
  106. Giri AK, Sivam SS, Khan KA, Sethi N. Sister Chromatid Exchange and Chromosome Aberrations in Mice after in Vivo Exposure of Green S-a Food Colorant. Environ Mol Mutagen. 1992;19(3): 223–226. doi: 10.1002/em.2850190306
  107. Das SK, Giri AK. Chromosome aberrations induced by secondary and tetriary amine-containing dyes and in combination with nitrite in vivo in mice. Cytobios. 1988;54:25–29.
  108. Giri AK, Mukherjee A. Sister chromatid exhange induced by secondary and tetriary amine containing dyes and in combination with nitrite in vivo in mice. Cancer Lett. 1990;52(1):33–37. doi: 10.1016/0304-3835(90)90074-8
  109. Misra RN, Misra B. Genetic toxicological testing of some dyes by the micronucleus test. Mutat Res. 1986;170(1–2):75–78. doi: 10.1016/0165-1218(86)90083-2
  110. Haveland-Smith RB, Combes RD, Bridges BA. Methodology for the testing of food dyes for genotoxic activity: experiments with red 2G (C.I. 18050). Mutat Res. 1979;64(4):241–248. doi: 10.1016/0165-1161(79)90093-1
  111. Jongen WM, Alink GM. Enzyme-mediated mutagenicity in Salmonella typhimurium of contaminants of synthetic indigo products. Food Chem Toxicol. 1982;20(6):917–920. doi: 10.1016/s0015-6264(82)80228-9
  112. Calvo TR, Cardoso CR, da Silva Moura AC, et al. Mutagenic activity of Indigofera truxillensis and. I. Suffruticosa aerial parts. Evidence-Based Complementary and Alternative Medicine. 2009;2011:323276. doi: 10.1093/ecam/nep123
  113. Hesbert A, Bottin MC, de Ceaurriz J, et al. Testing natural indigo for genotoxicity. Toxicol Lett. 1984;21(1):119–125. doi: 10.1016/0378-4274(84)90232-7
  114. Rannug U, Bramstedt H, Nilsson U. The presence of genotoxic and bioactive components in indigo dyed fabrics – a possible health risk? Mutat Res Lett. 1992;282(3):219–225. doi: 10.1016/0165-7992(92)90099-4
  115. Dominici L, Cerbone B, Villarini M, et al. In vitro testing for genotoxicity of indigo naturalis assessed by micronucleus test. Nat Prod Commun. 2010;5(7):1039–1042. doi: 10.1177/1934578X1000500711
  116. Whitewell J. Indigo carmine: Induction of micronuclei in the bone marrow of treated rats. Convance study Number 8290778, Final report. Unpublished study report (EFSA Panel on Food additives and Nutrient Sources added to Food (ANS) Scientific Opinion on the re-evaluation of Indigo Carmine (E132) as a food additive). EFSA Journal. 2014;12(7):3768. doi: 10.2903/j.efsa.2014.3768
  117. Davies J, Burke D, Olliver J, et al. The induction of DNA damage by methylene blue but not by indigo carmine in human colonocytes in vitro and in vivo, mutagenesis. UK, Oxford: Oxford Univ Press Great Clarendon St; 2006.
  118. Zeiger E. Mutagenicity of chemicals added to foods. Mutat Res. 1993;290(1):53–61. doi: 10.1016/0027-5107(93)90032-b
  119. Hollstein M, Talcott R, Wei E. Quinoline: conversion to a mutagen by human and rodent liver. J Natl Cancer Inst. 1978;60(2):405–410. doi: 10.1093/jnci/60.2.405
  120. Indonesia Dokumen [Internet]. SCCNFP (Scientific Committee on Cosmetic Products and Non-Food Products intended for Consumers). 2004. Opinion of the Scientific Committee on Cosmetic Products and Non-Food Products Intended for Consumers Concerning Acid Yellow 3, Colipa No. C54. Available from: https://ec.europa.eu/health/archive/ph_risk/committees/sccp/documents/out276_en.pdf
  121. Chequer FMD, de Paula Venâncio V, de Souza Prado MR, et al. The cosmetic dye quinoline yellow causes DNA damage in vitro. Mutat Res Genet Toxicol Environ Mutagen. 2015;777:54–61. doi: 10.1016/j.mrgentox.2014.11.003
  122. Kobylewski S, Jacobson MF. Toxicology of food dyes. Int J Occup Environ Health. 2012;18(3):220–246. doi: 10.1179/1077352512Z.00000000034
  123. Federal’nyi tsentr gigieny i ehpidemiologii Rospotrebnadzora. Prikaz Rospotrebnadzora ot 01.08.2006 № 225 (red. ot 22.07.2016) “O sanitarno-ehpidemiologicheskoi ehkspertize pestitsidov i agrokhimikatov” Prilozhenie 1 Poryadok organizatsii sanitarno-ehpidemiologicheskoi ehkspertizy pestitsidov na territorii Rossiiskoi Federatsii. Moscow: Federal’nyi tsentr gigieny i ehpidemiologii Rospotrebnadzora; 2006. (In Russ.)

Supplementary files

There are no supplementary files to display.


Copyright (c) 2021 ООО "Эко-Вектор"



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies