Sources and donors of the multi-row ear trait for hybrid breeding of corn in the VIR collection

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The sign of the number of rows of grains on the cob is one of the key to improving the productivity of corn. The effects of the genes that control this trait have been poorly studied. The search for sources and donors of this trait is relevant for hybrid breeding.

AIM: The aim of this study is to search for sources and donors of the multi-row ear trait in the VIR collection for involvement in the breeding of hybrid corn.

MATERIALS AND METHODS: The studies were carried out on 16 lines (S3–6) with different inbredness and varying the number of rows of grains on an ear from 18 to 36, the exotic 8-row race CUZCO characterized by large grains and the MP-20 population with 20–36 rows of ears. Hybridization and crop recording were carried out in the field conditions of the foothill zone of the Kabardino-Balkarian Republic.

RESULTS: Based on similar phenotypic characteristics, 16 lines of corn with a multi-row cob were ranked into 5 groups. Analysis of the structure of the ear of the experimental F1 hybrid between the MP-20 population and the 8-row, large-grain race CUZCO showed that the trait of multi-row ear and large-grain is manifested as incomplete dominance. The yield potential of the experimental simple hybrid was no less than 12.2 tons per 1 hectare with a harvest grain moisture content of 37% and an FAO ripeness group of at least 600. A significant drawback of corn lines with multi-row cobs is the high harvest moisture content of the grain.

CONCLUSIONS: The collection of multirow maize lines serves as a valuable source of genes that control important quantitative traits and can be involved in the breeding of hybrid maize for its improvement.

Full Text

Restricted Access

About the authors

Eduard B. Khatefov

N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Author for correspondence.
Email: haed1967@rambler.ru
ORCID iD: 0000-0001-5713-2328
SPIN-code: 7929-8148
ResearcherId: T-6816-2018

Dr. Sci. (Biology)

Russian Federation, Saint Petersburg

Polina M. Bogdan

A.K. Chaika Federal Research Center of Agricultural Biotechnology of the Far East

Email: polina_bogdan84@mail.ru
ORCID iD: 0000-0003-3052-5521
SPIN-code: 8721-8062

MD, Cand. Sci. (Agriculture)

Russian Federation, Ussuriysk

Aleksander A. Grushin

N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Email: gnuvosvniir@yandex.ru
ORCID iD: 0000-0003-2842-1512
SPIN-code: 3457-1434

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Irina V. Fil

N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Email: irinafil1974@icloud.com
ORCID iD: 0000-0001-5005-3926
SPIN-code: 3223-8030

Cand. Sci. (Agricultural)

Russian Federation, Saint Petersburg

Vasilii V. Sherstobitov

N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Email: scherstobitow@mail.ru
ORCID iD: 0000-0001-8308-5107

Cand. Sci. (Agricultural)

Russian Federation, Saint Petersburg

Vladislav N. Boyko

N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Email: boyko_vlad@mail.ru
ORCID iD: 0000-0001-7919-1302
SPIN-code: 9993-8900

Cand. Sci. (Agricultural)

Russian Federation, Saint Petersburg

References

  1. Shiferaw B, Prasanna BM, Hellin J, Banziger M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Secur. 2011;3:307–327. doi: 10.1007/s12571-011-0140-5
  2. specagro.ru [Internet] Digest of key publications in mass media. No. 14. Grain market. Samara: Agroanalytics Centre. 37 p. (In Russ.) [cited 27 May 2023] Available from: https://specagro.ru/sites/default/files/2020-09/daydzhest-zernovye_no14.pdf
  3. Sluyter A, Dominguez G. Early maize (Zea mays L.) cultivation in Mexico: Dating sedimentary pollen records and its implications. PNAS. 2006;103(4):1147–1151. doi: 10.1073/pnas.0510473103
  4. Sigmon B, Vollbrecht E. Evidence of selection at the ramosa1 locus during maize domestication. Mol Ecol. 2010;19(7):1296–1311. doi: 10.1111/j.1365-294X.2010.04562.x
  5. Bommert P, Nagasawa NS, Jackson D. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nat Genet. 2013;45:334–337. doi: 10.1038/ng.2534
  6. Il Je B, Gruel J, Lee YK, et al. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nat Genet. 2016;48:785–791. doi: 10.1038/ng.3567
  7. Wang J, Lin Z, Zhang X, et al. krn1, a major quantitative trait locus for kernel row number in maize. New Phytologist. 2019;223(3): 1634–1646. doi: 10.1111/nph.15890
  8. Brown PJ, Upadyayula N, Mahone GS, et al. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genet. 2011;7:e1002383. doi: 10.1371/journal.pgen.1002383
  9. Peng B, Li YX, Wang Y, et al. QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theor Appl Genet. 2011;122:1305–1320. doi: 10.1007/s00122-011-1532-9
  10. Yang JL, Jiang HY, Yeh C-T, et al. Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel. Plant J. 2015;84(3):587–596. doi: 10.1111/tpj.13029
  11. Liu X, Huang M, Fan B, et al. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genet. 2016;12:e1005767. doi: 10.1371/journal.pgen.1005767
  12. Bommert P, Il Je B, Goldshmidt A, Jackson D. The maize G alpha gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature. 2013;502:555–558. doi: 10.1038/nature12583
  13. Wu Q, Xu F, Jackson D. All together now, a magical mystery tour of the maize shoot meristem. Curr Opin Plant Biol. 2018;45(A):26–35. doi: 10.1016/j.pbi.2018.04.010
  14. Vollbrecht E, Springer PS, Goh L, et al. Architecture of floral branch systems in maize and related grasses. Nature. 2005;436:1119–1126 doi: 10.1038/nature03892
  15. Bortiri E, Chuck G, Vollbrecht E, et al. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell. 2006;18(3):574–585. doi: 10.1105/tpc.105.039032
  16. Satoh-Nagasawa N, Nagasawa N, Malcomber S, et al. A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature. 2006;441:227–230. doi: 10.1038/nature04725
  17. Gallavotti A, Long JA, Stanfield S, et al. The control of axillary meristem fate in the maize ramosa pathway. Development. 2010;137(17):2849–2856. doi: 10.1242/dev.051748
  18. Pautler M, Eveland AL, LaRue T, et al. FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot Meristem size in maize. Plant Cell. 2015;27(1):104–120. doi: 10.1105/tpc.114.132506
  19. Chuck G, Cigan AM, Saeteurn K, Hake S. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nat Genet. 2007;39:544–549. doi: 10.1038/ng2001
  20. Zhang D, Sun W, Singh R, et al. GRF-interacting factor1 regulates shoot architecture and meristem determinacy in maize. Plant Cell. 2018;30(2):360–374. doi: 10.1105/tpc.17.00791
  21. Liu L, Du YF, Shen XM, et al. KRN4 controls quantitative variation in maize kernel row number. PLoS Genet. 2015;11:e1005670. doi: 10.1371/journal.pgen.1005670
  22. Shmaraev GE, Matveeva GV. Study and maintenance of maize collection samples. Methodical recommendations. Leningrad: VIR, 1985. 49 p. (In Russ.)
  23. Sotchenko VS. Breeding. Seed production. Technology of maize cultivation. Pyatigorsk: RASKhN GNU VNII maize, 2009. (In Russ.)
  24. Kukekov VG, editor. Broad unified CMEA classifier and international CMEA classifier of Zea mays L. Leningrad: B.i., 1977. 70 p. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Corn cobs of the WT standard (a) and lines with different numbers of rows of grains on the cob, ranked by phenotypic groups A (b), C1 (c), C2 (d), C3 (e), B (f)

Download (372KB)
3. Fig. 2. The number of rows of grains on cobs with top fasciation: а — 16 rows (standard), b — 32–34 rows, с — 22–24 rows, d — 20–22 rows

Download (580KB)
4. Fig. 3. Cobs (left) and grain (right) of an experimental F1 hybrid between the MP-20 population and the coarse starch corn race CUZCO

Download (327KB)

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies