Sources and donors of the multi-row ear trait for hybrid breeding of corn in the VIR collection



Cite item

Full Text

Abstract

BACKGROUND: The sign of the number of rows of grains on the cob is one of the key to improving the productivity of corn. The effects of the genes that control this trait have been poorly studied. The search for sources and donors of this trait is relevant for hybrid breeding.

MATERIALS AND METHODS: The studies were carried out on 16 lines (S3-6) with different inbredness and varying the number of rows of grains on the cob from 18 to 36, the exotic race CUZCO characterized by large grains. Hybridization and crop recording were carried out in the field conditions of the foothill zone of the Kabardino-Balkarian Republic

RESULTS: Conducted by ranking the putative sources of genes td1, ct2, fea2, fea3, fea4 by phenotype. Other promising sources and donors for the multirow trait without pronounced fasciation of the cob have been identified. An experimental hybrid was obtained between the MP-20 population and the high-starch, large-grain race CUZCO. Analysis of the structure of the cob of the F1 hybrid showed that the trait of multi-row cob from the maternal form and coarse grain from the paternal form in the hybrid phenotype manifests itself as an incomplete dominance type with the formation of the number of rows and the weight of 1000 grains according to the intermediate type. The yield potential of the experimental simple hybrid was no less than 12.2 tons per 1 hectare with a harvest grain moisture content of 37% and an FAO ripeness group of no less than 600.

CONCLUSIONS: The collection of multirow maize lines serves as a valuable source of genes that control important quantitative traits and can be involved in the breeding of hybrid maize for its improvement.

Full Text

Restricted Access

About the authors

Irina Fil

N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Email: irinafil1974@icloud.com
ORCID iD: 0000-0001-5005-3926
SPIN-code: 3223-8030

leading research associate

Russian Federation, 42–44, Bolshaya Morskaya Street, St Petersburg, 190000, Russia

Eduard khatefov

N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Author for correspondence.
Email: haed1967@rambler.ru
ORCID iD: 0000-0001-5713-2328
SPIN-code: 7929-8148
ResearcherId: T-6816-2018
https://www.vir.nw.ru

Ведущий научный сотрудник отдела генетических ресурсов крупяных культур ВИР

Russian Federation, 42–44, Bolshaya Morskaya Street, St Petersburg, 190000, Russia

Polina Bogdan

Federal Scientific Center of Agricultural Biotechnology of the Far East named after A.K. Chaika

Email: polina_bogdan84@mail.ru
ORCID iD: 0000-0003-3052-5521
SPIN-code: 8721-8062

Senior Researcher

Russian Federation, 30 Volozhenina St., Timiryazevsky Settlem., Ussuriysk 692539, Russia

Alexander Grushin

N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR)

Email: gnuvosvniir@yandex.ru
ORCID iD: 0000-0003-2842-1512
SPIN-code: 3457-1434

Senior Researcher, Department of Genetic Resources of Cereal Crops

Russian Federation, Russia, 190000, St. Petersburg, st. B. Morskaya, 42, 44

Vasily Sherstobitov

N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 42–44

Email: scherstobitow@mail.ru
ORCID iD: 0000-0001-8308-5107

Senior Researcher, Department of Genetic Resources of Cereal Crops

Russian Federation, Russia, 190000, St. Petersburg, st. B. Morskaya, 42, 44

Vladislav N. Boyko

N.I. Vavilov All-Russian Institute of Plant Genetic Resources

Email: boyko_vlad@mail.ru
ORCID iD: 0000-0001-7919-1302
SPIN-code: 9993-8900

Cand. Sci. (Agricultural), senior research associate

Russian Federation, Saint Petersburg

References

  1. References
  2. Shiferaw B, Prasanna BM, Hellin J, Banziger M. Crops that feed the world 6. Past successes and future challenges to the role played by maize in global food security. Food Security 2011; 3: 307–327. https://doi.org/10.1007/s12571-011-0140-5.
  3. Ministry of Agriculture of the Russian Federation. FSBI Center for Agricultural Analytics. Digest of key media publications. №14. (In Russ) https://specagro.ru/sites/default/files/2020-09/daydzhest-zernovye_no14.pdf [access date 02/12/2018 27.05.2023]
  4. Sluyter A, Dominguez G. Early maize (Zea mays L.) cultivation in Mexico: Dating sedimentary pollen records and its implications. 2006; 103(4); 1147-1151 https://doi.org/10.1073/pnas.0510473103
  5. Sigmon B, Vollbrecht E. Evidence of selection at the ramosa1 locus during maize domestication. Molecular Ecology 2010:19: 1296–1311. https://doi.org/10.1111/j.1365-294X.2010.04562.x
  6. Bommert P, Nagasawa NS., Jackson D. Quantitative variation in maize kernel row number is controlled by the FASCIATED EAR2 locus. Nature Genetics 2013b; 45: 334–337. https://doi.org/10.1038/нг.2534
  7. Il Je B, Gruel J, Lee YK, Bommert P, Arevalo ED, Eveland AL, Wu QY, Goldshmidt A, Meeley R, Bartlett M et al. Signaling from maize organ primordia via FASCIATED EAR3 regulates stem cell proliferation and yield traits. Nature Genetics 2016; 48: 785–791. https://doi.org/10.1038/нг.3567
  8. Wang J, Lin Z, Zhang XY., Liu H, Zhou L, Zhong, S, Wu Q. krn, a major quantitative trait locus for kernel row number in maize. New Phytologist 2019; 223(3), 1634-1646. https://doi.org/10.1111/nph.15890
  9. Brown PJ, Upadyayula N, Mahone GS, Tian F, Bradbury PJ, Myles S, Holland JB, Flint-Garcia S., McMullen M.D., Buckler E.S. et al. Distinct genetic architectures for male and female inflorescence traits of maize. PLoS Genetics 2011; 7: e1002383. https://doi.org/10.1371/journal.pgen.1002383
  10. Peng B, Li YX, Wang Y, Liu C, Liu ZZ, Tan WW, Zhang Y, Wang D, Shi YS, Sun BC. et al. QTL analysis for yield components and kernel-related traits in maize across multi-environments. Theoretical and Applied Genetics 2011; 122: 1305–1320. https://doi.org/10.1007/s00122-011-1532-9
  11. Yang JL, Jiang HY, Yeh CT, Yu JM, Jeddeloh JA, Nettleton D, Schnable PS. Extreme-phenotype genome-wide association study (XP-GWAS): a method for identifying trait-associated variants by sequencing pools of individuals selected from a diversity panel. The Plant Journal 2015; 84: 587–596. https://doi.org/10.1111/tpj.13029
  12. Liu X, Huang M, Fan B, Buckler ES, Zhang Z. Iterative usage of fixed and random effect models for powerful and efficient genome-wide association studies. PLoS Genetics 2016; 12: e1005767. https://doi.org/10.1371/journal.pgen.1005767
  13. Bommert P, Il Je B, Goldshmidt A, Jackson D. The maize G alpha gene COMPACT PLANT2 functions in CLAVATA signalling to control shoot meristem size. Nature 2013a; 502: 555–558. https://doi.org/10.1038/nature12583
  14. Wu Q, Xu F, Jackson D. All together now, a magical mystery tour of the maize shoot meristem. Current Opinion in Plant Biology 2018; 45: 26–35. https://doi.org/10.1016/j.pbi.2018.04.010
  15. Vollbrecht E, Springer PS, Goh L, Buckler ES, Martienssen R. Architecture of floral branch systems in maize and related grasses. Nature 2005; 436: 1119–1126 https://doi.org/10.1038/nature03892
  16. Bortiri E, Chuck G, Vollbrecht E, Rocheford T, Martienssen R, Hake S. ramosa2 encodes a LATERAL ORGAN BOUNDARY domain protein that determines the fate of stem cells in branch meristems of maize. Plant Cell 2006; 18: 574–585. https://doi.org/10.1105/tpc.105.039032
  17. Satoh-Nagasawa N, Nagasawa N, Malcomber S, Sakai H, Jackson D. A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature 2006; 441: 227–230. https://doi.org/10.1038/nature04725
  18. Gallavotti A, Long JA, Stanfield S, Yang XA, Jackson D, Vollbrecht E, Schmidt RJ. The control of axillary meristem fate in the maize ramosa pathway. Development 2010; 137: 2849–2856. https://doi.org/10.1242/dev.051748
  19. Pautler M, Eveland AL, LaRue T, Yang F, Weeks R, Lunde C, Il Je B, Meeley R, Komatsu M., Vollbrecht E. et al.. FASCIATED EAR4 encodes a bZIP transcription factor that regulates shoot Meristem size in maize. Plant Cell 2015; 27: 104–120. https://doi.org/10.1105/tpc.114.132506
  20. Chuck G, Cigan AM, Saeteurn K, Hake S. The heterochronic maize mutant Corngrass1 results from overexpression of a tandem microRNA. Nature Genetics 2007a; 39: 544–549. https://doi.org/10.1038/ng2001.
  21. Zhang D, Sun W, Singh R, Zheng YY, Cao Z, Li MF, Lunde C, Hake S, Zhang ZX. GRF-interacting factor1 regulates shoot architecture and meristem determinacy in maize. Plant Cell 2018; 30: 360–374. https://doi.org/10.1105/tpc.17.00791
  22. Liu L, Du YF, Shen XM, Li MF, Sun W, Huang J, Liu ZJ., Tao YS, Zheng YL, Yan JB. et al. KRN4 controls quantitative variation in maize kernel row number. PLoS Genetics 2015; 11: e1005670. https://doi.org/10.1371/journal.pgen.1005670
  23. Broad unified classifier of CMEA and international classifier of CMEA species Zea mays L. / ed. VG Kukekov. Leningrad, 1977. 70 с. (In Russ)
  24. Shmaraev GE., Matveeva GV. Study and maintenance of corn collection specimens. Guidelines. Leningrad: VIR, 1985. 49 с. (In Russ)
  25. Sotchenko VS. Selection. Seed production. Corn cultivation technology. Russian Academy of Agricultural Sciences Research Institute of Corn. Pyatigorsk. 2009. (In Russ)
  26. Statistica 10.0 https://1soft.space/statsoft-statistica/ [Access date 02/12/2018]

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies