Genetics and breeding for triticale resistance to the pathogen of stem rust Puccinia graminis Pers.: review



Cite item

Full Text

Abstract

Stem rust caused by the fungus Puccinia graminis f. sp. tritici (Pgt) remains one of the most dangerous diseases of grain crops. This review provides an analysis of the evolution of the relationship between triticale (×Triticosecale Wittmack) and Pgt since the beginning of commercial cultivation of this crop, covering the historical aspects of the spread of the pathogen, changes in its virulence and adaptation to various varieties of triticale, as well as the response measures taken by breeders to increase the resistance of the crop to the disease. Special attention is paid to the features of the pathological process of stem rust development on triticale, which, like in wheat, includes the stages of spore germination, penetration into plant tissues and formation of urediopustules. It is noted that triticale, being a hybrid of wheat and rye, is susceptible to both wheat and rye forms of stem rust. The review also covers modern methods for studying triticale resistance to Pgt, including the use of molecular markers to identify resistance genes and screening breeding material aimed at creating varieties with long-term and effective resistance to stem rust.

Full Text

Restricted Access

About the authors

Ksenia Dudnikova

Federal Research Center of Biological Plant Protection; All-Russia Research Institute of Agricultural Biotechnology

Author for correspondence.
Email: saenkok1997@yandex.ru
ORCID iD: 0000-0002-3947-0726
SPIN-code: 8655-3066

Postgraduate student, laboratory researcher at the Plant Immunity Group ARRIAB

Russian Federation, 350039, Russia, Krasnodar territory, Krasnodar, ul. Kalinina, 62; 127550, Moscow, Timiryazevskaya, 42

Olga Baranova

All-Russian Institute of Plant Protection

Email: baranova_oa@mail.ru
ORCID iD: 0000-0001-9439-2102
SPIN-code: 4868-9416
Scopus Author ID: 56989102900

PhD, Leading Researcher at the Laboratory of Plant Immunity to Diseases

Russian Federation, 196608, St. Petersburg, Pushkin, sh. Podbelskogo, 3

Alexander Soloviev

All-Russia Research Institute of Agricultural Biotechnology; All-Russian Plant Quarantine Center;
Tsitsin Main Botanical Garden of the Russian Academy of Sciences

Email: a.soloviev70@gmail.com
ORCID iD: 0000-0003-4480-8776
SPIN-code: 3431-5168
Scopus Author ID: 35732425900
ResearcherId: Q-1589-2015

Deputy Director, Doctor of Biological Sciences, Professor of the Russian Academy of Sciences, FGBU VNIIKR

Russian Federation, 127550, Moscow, Timiryazevskaya, 42; 140150, Moscow Region, M.O. Ramensky, RP Bykovo, Pogranichnaya str., 32; 127276 Moscow, Botanic str., 4

Andrey Shingaliev

All-Russia Research Institute of Agricultural Biotechnology

Email: kronstein491@yandex.ru
ORCID iD: 0009-0002-1488-2721

Postgraduate student, laboratory researcher at the Plant Immunity Group, ARRIAB 

Russian Federation, 127550, Moscow, Timiryazevskaya, 42

Olga Shchuklina

Tsitsin Main Botanical Garden of the Russian Academy of Sciences

Email: oashuklina@gmail.com
ORCID iD: 0000-0002-3775-6077
SPIN-code: 2110-4103
Scopus Author ID: 57223103933

PhD, Head of the Department of Remote Hybridization, Senior Researcher

Russian Federation, 127276, Moscow, Botany street, 4

Maxim Dudnikov

All-Russia Research Institute of Agricultural Biotechnology

Email: max.dudnikov.07@gmail.com
ORCID iD: 0000-0002-0755-0801
SPIN-code: 7717-1118
Scopus Author ID: 55390914800
ResearcherId: AAE-9434-2020

PhD, Leading Researcher at the Plant Immunity Group of the GNU VNIISB

Russian Federation, 127550, Moscow, Timiryazevskaya, 42

References

  1. Koishibaev M, Muminjanov H Methodological guidelines for monitoring diseases, pests and weeds in grain crops. Food and Agriculture Organization of the United Nations. 2016. (In Russ).
  2. Vavilov NI Immunity of plants to infectious diseases. Moscow: Science. 1986:239. (In Russ).
  3. Levitin MM, Fedorova IV Genetics of phytopathogenic fungi. Saint Petersburg: Science. 1972:245. (In Russ).
  4. Kazi AG, Rasheed A, Mujeeb-Kazi A Biotic stress and crop improvement: a wheat focus around novel strategies. Crop Improvement: New Approaches and Modern Techniques. 2013:239–267. doi: 10.1007/978-1-4614-7028-1_7
  5. Mergoum M, Singh PK, Peña RJ, et al. Triticale: A “New” crop with old challenges. Cereals. 2009:267–287. doi: 10.1007/978-0-387-72297-9_9
  6. Pylnev VV, Konovalov YuB, Khupatsaria TI, Buko OA, editors. Private breeding of field crops: textbook. St. Petersburg: Lan; 2022. (In Russ).
  7. Müntzing A Cytogenetic and breeding studies in Triticale. Hereditas. 1966; 2:291–300. (In Deutsch).
  8. Oettler G The fortune of a botanical curiosity – Triticale: past, present and future. J. Agric. Sci. 2005;143: 329–346. doi: 10.1017/s0021859605005290.
  9. Lanjouw J International code of botanical nomenclature. International Bureau for Plant Taxonomy and Nomenclature of the International Association for Plant Taxonomy. 1952.
  10. Meinel A, Franke R Entstehung Geschichte und aktuelle Bedeutung des ersten fertilen allopolyploiden Weizen-Roggen-Bastards: des Triticale von W. Rimpau. Archiv fuer Zuechtungsforschung. 1988;18(4):189-200. (In Deutsch).
  11. Kwiatek MT, Nawracała J Chromosome manipulations for progress of triticale (×Triticosecale) breeding. Plant Breeding. 2018;137(6):823-831. doi: 10.1111/pbr.12652.
  12. Hammer K, Filatenko AA, Pistrick K Taxonomic remarks on Triticum L. and ×Triticosecale Wittm. Genetic Resources and Crop Evolution. 2010;58(1):3-10. doi: 10.1007/s10722-010-9590-4.
  13. Arseniuk E, Góral T. Triticale biotic stresses – known and novel foes. Triticale. 2015:83–108. doi: 10.1007/978-3-319-22551-7_5
  14. Fao.org [Internet]. Food and Agriculture Organization of the United Nations [cited: 2024 Jun 09]. Доступ по ссылке: https: www.fao.org
  15. Singh RP, Saari EE Biotic stress in triticale. Proceedings of the 2nd International Triticale Symposium. Passo Fundo, Brazil. 1990:171–181.
  16. Prokhorova SV, Tereshchuk VS, Nemkovich AI Phytosanitary condition of triticale crops. Proceedings of the Academy of Agrarian Sciences of the Republic of Belarus. 2000;2:51–56. (In Russ).
  17. Olivera PD, Pretorius ZA, Badebo A, Jin Identification of resistance to races of Puccinia graminis f. sp. tritici with broad virulence in triticale (×Triticosecale). Plant Dis. 2013;97(4):479–484. doi: 10.1094/pdis-05-12-0459-re
  18. Audenaert K, Troch V, Landschoot S, Haesaert G Biotic stresses in the anthropogenic hybrid triticale (×Triticosecale Wittmack): current knowledge and breeding challenges. Eur. J. Plant Pathol. 2014;140(4):615–630. doi: 10.1007/s10658-014-0498-2
  19. Patpour M, Hovmøller MS, Rodriguez-Algaba J, et al. Wheat stem rust back in Europe: diversity, prevalence and impact on host resistance. Frontiers in Plant Science. 2022;13:882440. (In Danish). doi: 10.3389/fpls.2022.882440
  20. Peresypkin VF Agricultural phytopathology. 4th ed. Moscow: Agropromizdat. 1989:480. (In Russ).
  21. Stancheva Y Atlas of diseases of agricultural crops. Part 3. Diseases of field crops. Translated by G. Danilova / editors Vasyutin AS, Shirota LV, Akulich OA. Bulgaria: Pensoft. 2003:175. (In Russ).
  22. Ulyanishchev VI Determinant of rust fungi of the USSR. Part 2. Saint Petersburg: Science. 1978:384. (In Russ).
  23. Dobrozrakova TL Agricultural phytopathology, 2nd ed. / Edited by MK Khokhryakov. Saint Petersburg: Kolos. 1974:382. (In Russ).
  24. Roelfs AP Wheat and rye stem rust. Diseases, Distribution, Epidemiology, and Control. Academic Press, Orlando. 1985:3–37. doi: 10.1016/b978-0-12-148402-6.50009-2
  25. Jin Y, Szabo LJ, Pretorius ZA, Singh RP, Ward R, Fetch T Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Disease. 2008. 92(6):923–926. doi: 10.1094/pdis-92-6-0923.
  26. Johnson T, Newton M, Brown AM Hybridization of Puccinia graminis tritici with Puccinia graminis secalis and Puccinia graminis agrostidis. Scientific Agriculture. 1932;13(3):141–153.
  27. Singh RP, Hodson DP, Huerta-Espino J, et al. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 2011;49:465–481. doi: 10.1146/annurev-phyto-072910-095423
  28. Martis MM, Zhou R, Haseneyer G, et al. Reticulate evolution of the rye genome. The Plant Cell. 2013;25(10):3685–3698. doi: 10.1105/tpc.113.114553
  29. Allen RF A cytological study of Pucoinia glnmarum on Bromus marginatus and Triticum vulgare. CABI Databases. 1928:487–513.
  30. Heath MC Light and electron microscope studies of the interactions of host and non-host plants with cowpea rust – Uromyces phaseoli var. vignae. Physiol. Plant Pathol. 1974;4(4):403–414. doi: 10.1016/0048-4059(74)90025-3
  31. Harder DE, Rohringer R, Samborski DJ, Kim WK, Chong J Electron microscopy of susceptible and resistant near-isogenic (sr6/Sr6) lines of wheat infected by Puccinia graminis tritici. I. The host–pathogen interface in the compatible (Sr6/P6) interaction. Can. J. Bot. 1978;56(23):2955–2966. doi: 10.1139/b78-358
  32. Staples RC, Hoch HC, Epstein L, Laccetti L, Hassouna S Recognition of host morphology by rust fungi: responses and mechanisms. Can. J. Plant Pathol. 1985;7(3):314–322.
  33. Niks RE Early abortion of colonies of leaf rust, Puccinia hordei, in partially resistant barley seedlings. Can. J. Bot. 1982;60(5):714–723. doi: 10.1139/b82-093
  34. Niks RE Haustorium formation by Puccinia hordei in leaves of hypersensitive, partially resistant, and nonhost plant genotypes. Phytopathology. 1983;73(1):64–66. doi: 10.1094/Phyto-73-64
  35. Jacobs T. Germination and appressorium formation of wheat leaf rust on susceptible, partially resistant and resistant wheat seedlings and on seedlings of other Gramineae. Neth. J. Plant Pathol. 1989; 95:65–71. doi: 10.1007/BF01997473
  36. Leonard KJ, Szabo LJ Stem rust of small grains and grasses caused by Puccinia graminis. Mol. Plant Pathol. 2005;6(2):99–111. doi: 10.1111/j.1364-3703.2005.00273.x
  37. Pardey PG, Beddow JM, Kriticos DJ, et al. Right-sizing stem-rust research. Science. 2013;340(6129):147–148. doi: 10.1126/science.122970
  38. Del Pozo A, Méndez-Espinoza AM, Castillo D. Triticale. In: Elsevier eBooks. ; 2023:325–362. doi: 10.1016/b978-0-323-90537-4.00029-6
  39. Hei N, Shimelis HA, Laing M Appraisal of farmers wheat production constraints and breeding priorities in rust prone agro-ecologies of Ethiopia. Afr. J. Agric. Res. 2017;12(12):944–952. doi: 10.5897/ajar2016.11518
  40. Bender CM, Boshoff WHP, Pretorius ZA Infection and colonization of triticale by Puccinia graminis f. sp. tritici. Can. J. Plant Pathol. 2021;43:198–210. doi: 10.1080/07060661.2021.1931453
  41. Lapochkina IF, Baranova OA, Shamanin VP, et al. The development of initial material of spring common wheat for breeding for resistance to stem rust (Puccinia graminis Pers. f. sp. tritici ), uncluding race Ug99, in Russia. Vavilov Journal of Genetics and Breeding. 2016;20(3):320–328. (In Russ). doi: 10.18699/VJ16.167
  42. Shamanin VP, Pototskaya IV, Shepelev SS, et al. Stem rust in Western Siberia–race composition and effective resistance genes. Vavilov Journal of Genetics and Breeding. 2020;24(2):131. doi: 10.18699/VJ20.608
  43. Volkova GV, Sinyak EV Stem rust of wheat. Protection and quarantine of plants. 2011;11:14–16. (In Russ).
  44. Shamanin VP., Morgunov AI, Petukhovsky SL, et al. Breeding of spring soft wheat for resistance to stem rust in Western Siberia. Editorial Board. 2015:287. (In Russ).
  45. Markelova TS Phytosanitary situation in the agrocenosis of cereal crops of the Volga region. Protection and quarantine of plants. 2015;5: 22–23. (In Russ).
  46. Volkova GV, Kudinova OA, Miroshnichenko OO Stem rust is a particularly dangerous disease of wheat. Achievements of science and technology AIC. 2020;34(1):20–25. (In Russ). doi: 10.24411/0235-2451-2020-10104
  47. Roelfs A, Singh RP, Saari EE Rust diseases of wheat: concepts and methods of disease management. CIMMYT. 1992:81.
  48. Zadoks JC Epidemiology of wheat rusts in Europe. Plant Protection Bulletin. F.A.O. 1965;13(5):97–108.
  49. Zadoks JC, Bouwman JJ Epidemiology in Europe. In: AP Roelfs, WR Bushnell, eds. The Cereal Rusts II: Distribution, Epidemiology and Control. Orlando, FL, USA: Academic Press. 1985:329–369. doi: 10.1016/b978-0-12-148402-6.50019-5
  50. Hermansen JE Studies on the Survival and Spread of Cereal Rust and Mildew Diseases in Denmark. Friesia. 1968;8(3):5–206.
  51. Olivera P, Newcomb M, Szabo LJ, et al. Phenotypic and Genotypic Characterization of Race TKTTF of Puccinia graminis f. sp. tritici that Caused a Wheat Stem Rust Epidemic in Southern Ethiopia in 2013–14. Phytopathology. 2015;105(7):917–928. doi: 10.1094/phyto-11-14-0302-fi
  52. Lewis CM, Persoons A, Bebber DP, et al. Potential for re-emergence of wheat stem rust in the United Kingdom. Commun. Biol. 2018;1(1):13. doi: 10.1038/s42003-018-0013-y
  53. Bhattacharya S Deadly new wheat disease threatens Europe's crops. Nature. 2017;542(7640):145–146. doi: 10.1038/nature.2017.21424
  54. Zamorski C, Schollenberger M, Nowicki B The role of triticale as the host of wheat and rye pathogens. Genet. Pol. 1994;35:143–155.
  55. Skowrońska R, Tomkowiak A, Nawracała J, Kwiatek MT Molecular identification of slow rusting resistance Lr46/Yr29 gene locus in selected triticale (× Triticosecale Wittmack) cultivars. J. Appl. Genet. 2020;61(3):359–366. doi: 10.1007/s13353-020-00562-8
  56. Kjellström C Population structure of Puccinia graminis, the cause of stem rust on wheat, barley, and rye in Sweden. SLU, Dept. of Forest Mycology and Plant Pathology. 2021:41. (in Swedish)
  57. Berlin A, Djurle A, Samils B, Yuen J Genetic variation in Puccinia graminis collected from oats, rye, and barberry. Phytopathology. 2012;102(10):1006–1012. doi: 10.1094/phyto-03-12-0041-r
  58. Olivera PD, Villegas D, Cantero‐Martínez C, et al. A unique race of the wheat stem rust pathogen with virulence on Sr31 identified in Spain and reaction of wheat and durum cultivars to this race. Plant Pathol. 2022;71(4):873–889. doi: 10.1111/ppa.13530
  59. Singh RP, Hodson DP, Jin Y, et al. Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKS) of stem rust pathogen. CABI Reviews. 2006;1:1–13. doi: 10.1079/PAVSNNR20061054
  60. Singh RP, Hodson DP, Huerta-Espino J, et al. Will stem rust destroy the world’s wheat crop?. Adv. Agron. 2008;98:271–309. doi: 10.1016/s0065-2113(08)00205-8
  61. Gross M Pests on the move. Curr. Biol. 2013;23(19):855–857. doi: 10.1016/j.cub.2013.09.034
  62. Bhavani S, Hodson DP, Huerta-Espino J, Randhawa MS, Singh RP Progress in breeding for resistance to Ug99 and other races of the stem rust fungus in CIMMYT wheat germplasm. Frontiers of Agricultural Science and Engineering. 2019;6(3):210–224. doi: 10.15302/j-fase-2019268
  63. Terefe TG, Boshoff WHP, Park RF, Pretorius ZA, Visser B Wheat Stem Rust Surveillance Reveals Two New Races of Puccinia graminis f. sp. tritici in South Africa During 2016 to 2020. Plant Dis. 2024;108:20–29. doi: 10.1094/pdis-06-23-1120-sr
  64. Figlan, S. et al. Wheat stem rust in South Africa: Current status and future research directions. Afr. J. Biotechnol. 2014;13:4188–4199.doi: 10.5897/AJB2014.14100
  65. Rsaliev AS, Rsaliev ShS The main approaches and achievements in the study of the racial composition of wheat stem rust. Vavilov Journal Of Genetics And Breeding. 2019;22:967–977. (In Russ). doi: 10.18699/VJ18.439.
  66. Park RF Stem rust of wheat in Australia. Aust. J. Agric. Res. 2007;58(6):558. doi: 10.1071/ar07117
  67. Upadhyaya NM, Garnica DP, Karaoglu H, et al. Comparative genomics of Australian isolates of the wheat stem rust pathogen Puccinia graminis f. sp. tritici reveals extensive polymorphism in candidate effector genes. Frontiers in Plant Science. 2015;5:1–13. doi: 10.3389/fpls.2014.00759
  68. Park RF Long term surveys of pathogen populations underpin sustained control of the rust diseases of wheat in Australia. J. Proc. R. Soc. N. S. W. 2015;148:15–27.
  69. McIntosh RA, Wellings CR, Park RF The genes for resistance to stem rust in wheat and triticale. Wheat Rusts: An atlas of resistance genes. Melbourne: CSIRO. 1995:83–146.
  70. Terefe T, Pretorius ZA, Paul I, et al. Occurrence and pathogenicity of Puccinia graminis f. sp. tritici on wheat in South Africa during 2007 and 2008. Journal of Plant and Soil. 2010;27(2):163–167.
  71. Luig N, Watson I The role of wild and cultivated grasses in the hybridization of formae speciales of Puccinia graminis. Aust. J. Biol. Sci. 1972;25(2):335–342:335. doi: 10.1071/bi9720335
  72. Roelfs AP Epidemiology in North America. The Cereal Rusts; Diseases, Distribution, Epidemiology, and Control. Academic Press, Orlando. 1985;II:403–434. doi: 10.1016/b978-0-12-148402-6.50021-3
  73. Saari EE, Prescott JM World Distribution in relation to economic losses. The Cereal Rusts II; Diseases, Distribution, Epidemiology, and Control. Academic Press, Orlando. 1985: 259–298. doi: 10.1016/b978-0-12-148402-6.50017-1
  74. Menzies JG, Fetch T, Zegeye T Virulence phenotypes of Puccinia graminis on barley, wheat and oat in Canada from 2020 to 2022. Can. J. Plant Pathol. 2024:1–7. doi: 10.1080/07060661.2024.2345350
  75. Solodukhina OV, Kobylyansky VD Problems of winter rye breeding for resistance to brown and stem rusts. Proceedings of EUCARPIA rye meeting. 2001;4–7.
  76. Boshoff WHP. Reaction of South African rye, triticale and barley forage cultivars to stem and leaf rust. S Afr J Plant Soil. 2019; 36(2):77–82. doi: 10.1080/02571862.2018.1522381
  77. Gruner P, Schmitt AK, Flath K, et al. Mapping Stem Rust (Puccinia graminis f. sp. secalis) resistance in self-fertile winter rye populations. Front Plant Sci. 2020;11. doi: 10.3389/fpls.2020.00667
  78. Ishkova TI, Berestetskaya LI, Gasich EL Diagnosis of the main fungal diseases of cereals et al. Saint Petersburg: All-Russian Scientific Research Institute of Plant Protection; 2008. EDN UBCJJN. (In Russ).
  79. Borlaug N An Assessment of Race Ug99 in Kenya and Ethiopia and the Potential for Impact in Neighboring Regions and Beyond. Sounding the Alarm on Global Stem Rust. 2005:30.
  80. Góral H, Stojałowski S, Warzecha T, Larsen J, et al. The development of hybrid triticale. Triticale. 2015: 33–66. (In Polish). doi: 10.1007/978-3-319-22551-7_3
  81. Randhawa HS, Bona L, Graf R J Triticale breeding—Progress and prospect. Triticale. 2015:15–32. doi: 10.1007/978-3-319-22551-7_2
  82. Skowrońska R, Mariańska M, Ulaszewski W, et al. Development of triticale × wheat prebreeding germplasm with loci for slow-rusting resistance. Frontiers in Plant Science. 2020;11:8. (In Polish). doi: 10.3389/fpls.2020.00447
  83. McIntosh RA, Dubcovsky J, Rogers W, et al. Catalogue of gene symbols for wheat: 2015–2016 supplement. Ann. Wheat Newsl. 2016;58:1–18.
  84. McIntosh RA, Luig NH, Milne DL, Cusick J Vulnerability of triticales to wheat stem rust. Can. J. Plant Pathol. 1983;5(2):61–69. doi: 10.1080/07060668309501629
  85. Singh SJ, McIntosh R.A. Allelism of two genes for stem rust resistance in triticale. Euphytica. 1988;38(2):185–189. doi: 10.1007/bf00040190
  86. Adhikari KN, McIntosh RA Inheritance of wheat stem rust resistance in triticale. Plant Breed. 1998;117(6):505–513. doi: 10.1111/j.1439-0523.1998.tb02199.x
  87. Zhang J, Wellings CR, McIntosh RA, Park RF Seedling resistances to rust diseases in international triticale germplasm. Crop Pasture Sci. 2010;61(12):1036–1048. doi: 10.1071/CP10252
  88. Zhang W, Chen S, Abate Z, Nirmala J, Rouse MN, Dubcovsky J Identification and characterization of Sr13, a tetraploid wheat gene that confers resistance to the Ug99 stem rust race group. Proceedings of the National Academy of Sciences of the United States of America. 2017;114(45): 9483–9492. doi: 10.1073/pnas.1706277114.
  89. Chen S, Rouse MN, Zhang W, et al. Fine mapping and characterization of Sr21, a temperature-sensitive diploid wheat resistance gene effective against the Puccinia graminis f. sp. tritici Ug99 race group. Theor. Appl. Genet. 2015;128(4):645–656. doi: 10.1007/s00122-015-2460-x.
  90. Savin T, Zotova L, Zhumalin A, Gajimuradova A, et al. Effectiveness of the influence of Sr and Lr genes on the field resistance of wheat to stem and leaf rust. Caspian Journal of Environmental Sciences. 2024;22(1):43–51. doi: 10.22124/cjes.2024.7481.
  91. Spetsov P, Daskalova N Resistance to pathogens in wheat-rye and triticale genetic stocks. J. Plant Pathol. 2022;104(1):99–114. doi: 10.1007/s42161-021-01019-5
  92. Marais GF An evaluation of three Sr27-carrying wheat × rye translocations. S. Afr. J. Plant Soil. 2001;18(3):135–136. doi: 10.1080/02571862.2001.10634417
  93. Mago R, Spielmeyer W, Lawrence G, et al. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using wheat-rye translocation lines. Theor. Appl. Genet. 2002;104(8):1317–1324. doi: 10.1007/s00122-002-0879-3
  94. Baranova OA, Lapochkina IF, Anisimova AV, et al. Identification of Sr genes in new common wheat sources of resistance to stem rust race Ug99 using molecular markers. Vavilov Journal of Genetics and Breeding. 2015;19(3):316–322. (In Russ). doi: 10.18699/VJ15.041
  95. Baranova O, Solyanikova V, Kyrova E, et al. Evaluation of resistance to stem rust and identification of Sr genes in Russian spring and winter wheat cultivars in the Volga region. Agriculture. 2023;13(3):635. doi: 10.3390/agriculture13030635
  96. Jin Y, Pretorius ZA, Singh RP New virulence within race TTKS (Ug99) of the stem rust pathogen and effective resistance genes. Phytopathology. 2007;97(7):137.
  97. Olivera PD, Sikharulidze Z, Dumbadze R, et al. Presence of a Sexual Population of Puccinia graminis f. sp. tritici in Georgia Provides a Hotspot for Genotypic and Phenotypic Diversity. Phytopathology. 2019;109(12):2152–2160. doi: 10.1094/phyto-06-19-0186-r
  98. McIntosh RA, Wellings CR, Park RF Wheat rusts: an atlas of resistance genes. CSIRO publishing. 1995:200.
  99. Upadhyaya NM, Mago R, Panwar V, et al. Genomics accelerated isolation of a new stem rust avirulence gene–wheat resistance gene pair. Nature Plants. 2021;7(9):1220–1228. doi: 10.1038/s41477-021-00971-5
  100. Isaiah A, James OO, Pascal POO Evaluation of triticale (×Triticosecale Wittmack) genotypes for adult plant resistance to stem rust (Puccinia graminis f. sp. tritici). Afr. J. Plant Sci. 2019;13(3):70–80. doi: 10.5897/ajps2018.1733
  101. Simons K, Abate Z, Chao S, et al. Genetic mapping of stem rust resistance gene Sr13 in tetraploid wheat (Triticum turgidum ssp. durum L.). Theor. Appl. Genet. 2010;122(3):649–658. doi: 10.1007/s00122-010-1444-0
  102. The TT, Latter BDH, McIntosh RA, et al. Grain yields of near-isogenic lines with added genes for stem rust resistance. In: Proceedings of the seventh international wheat genetics symposium, held at Cambridge, UK. 1988: 901–906.
  103. Brown GN A seedling marker for gene Sr2 in wheat. Proceedings of the 10th Australian plant breeding conference. 1993:139–140. doi: 10.1007/s00122-010-1482-7
  104. Roelfs AP, Casper DH, Long DL, Roberts JJ Races of Puccinia graminis in the United States in 1989. Plant Dis. 1991;75:1127–1130. doi: 10.1094/PD-75-1127
  105. Harder DE, Dunsmore KM Incidence and virulence of Puccinia graminis. f. sp. tritici on wheat and barley in Canada in 1991. Can. J. Plant Pathol. 1993;15(1):37–40. doi: 10.1080/07060669309500848
  106. Nirmala J, Chao S, Olivera P, et al. Markers Linked to Wheat Stem Rust Resistance Gene Sr11 Effective to Puccinia graminis f. sp. tritici Race TKTTF. Phytopathology. 2016;106(11):1352–1358. doi: 10.1094/phyto-04-16-0165-r
  107. Dolmatovich TV, Buloychik AA DNA technology for identification of triticale resistance genes to pathogens of brown, stem and yellow rust of wheat. Methodological recommendations. Minsk. 2015:32. (In Russ).
  108. Olivera PD, Szabo LJ, Kokhmetova A., et al. Puccinia graminis f. sp. tritici population causing recent wheat stem rust epidemics in Kazakhstan is highly diverse and includes novel virulence pathotypes. Phytopathology. 2022;112(11):2403–2415. doi: 10.1094/phyto-08-21-0320-r
  109. Saenko KYu, Dudnikov MV Search for resistance genes identified in wheat in the triticale genome. Biotechnology in crop production, animal husbandry and agricultural microbiology : A collection of abstracts of the XXII All-Russian International Conference of Young Scientists dedicated to the memory of Academician of the Russian Academy of Agricultural Sciences Georgy Sergeevich Muromtsev, Moscow, December 07-09, 2022. Moscow: ARRIAB. 2022. С. 69–70. (In Russ).
  110. Saenko KYu, Dudnikov MV Genes of susceptibility of cereals to rust diseases (S-genes) // Protection of plants from harmful organisms. 2023. С. 342–344. (In Russ).
  111. Tyryshkin LG, Kolesova MA The use of molecular-genetic and phytopathological methods to identify genes for effective leaf rust resistance in Aegilops accessions. Proceedings on applied botany, genetics and breeding. 2020;181(2):87–95. doi: 10.30901/2227-8834-2020-2-87-95 (In Russ).
  112. Dolmatovich TV, Buloychik AA, Grib, et al., Screening of varietal samples of competitive testing of winter and spring triticale for the presence of resistance genes to leaf, stem and yellow rust of wheat. Agriculture and breeding in Belarus. 2022;52:225–231. (In Russ).
  113. Dolmatovich TV, Buloychik AA DNA analysis of winter and spring triticale varieties zoned on the territory of the Republic of Belarus for the presence of resistance genes to leaf, stem and yellow rust. Bulletin of Plant Protection. 2016;89(3):65–66. (In Russ).
  114. Volkova GV et al. Rust resistance of wheat and triticale samples in different phases of ontogenesis. South of Russia Ecology and Development. 2024;18:161–172. (In Russ). doi: 10.18470/1992-1098-2023-4-161-172
  115. Yerzhebayeva RS, Abekova AM, Bastaubaeva SO, et al. Identification of the leaf and stem rust resistance genes in breeding lines of triticale. Sakh. Svekla. 2017;8:32–37.
  116. Yerzhebayeva RS, Bazylova TA, Babissekova DI, et al. Studying a Spring Triticale Collection for Resistance to Leaf and Stem Rusts using Allele-Specific Markers. Cytology and Genetics. 2020;54(6):546–554. doi: 10.3103/s0095452720060043
  117. Mago R, Brown-Guedira G, Dreisigacker S, et al. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theoretical and Applied Genetics. 2010;122(4):735–744. doi: 10.1007/s00122-010-1482-7
  118. Weng Y, Azhaguvel P, Devkota RN, Rudd JC PCR‐based markers for detection of different sources of 1AL.1RS and 1BL.1RS wheat rye translocations in wheat background. Plant Breed. 2007;126(5):482–486. doi: 10.1111/j.1439-0523.2007.01331.x
  119. Mago R, Zhang P, Vautrin S et al. The wheat Sr50 gene reveals rich diversity at a cereal disease resistance locus. Nature Plants. 2015;1:1–3. doi: 10.1038/nplants.2015.186
  120. Stakman EC, Stewart DM, Loegering WQ Identification of physiologic races of Puccinia graminis var. tritici . Identification of physiologic races of Puccinia graminis var. tritici . Washington: USDA. 1962:53.
  121. Terefe TG, Visser B, Pretorius ZA Variation in Puccinia graminis f. sp. tritici detected on wheat and triticale in South Africa from 2009 to 2013. Crop Prot. 2016;86:9–16. doi: 10.1016/j.cropro.2016.04.006
  122. Miedaner T, Flath K, Gruner P, Schmitt AK, Schulz P Looking ahead: races and resistances to stem rust in European wheat and triticale. Proceedings of the 73rd conference of the vereinigung der pflanzenzüchter und saatgutkaufleute österreichs, Raumberg-Gumpenstein, Irdning, Austria, 21-23 November 2022:23–24. (In German). DOI:0.5281/zenodo.7875597
  123. Kwiatek MT, Noweiska A, Bobrowska R, et al. Novel Tetraploid triticale (Einkorn wheat × Rye) – A source of stem rust resistance. Plants. 2023;12(2):278. doi: 10.3390/plants12020278

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.