Genome-wide association study for carcass traits in Tsarskoye Selo chicken breed



Cite item

Full Text

Abstract

Background. The efficiency of modern selection programs in poultry breeding largely depends on animal genotyping. The availability of genotyping data allows to perform genome-wide association studies (GWAS), a genotype array analysis that identifies relationships between phenotypic traits and genome. Establishing local poultry breeds for meat production, a crucial protein source for human nutrition, is a significant priority within the national poultry sector. Achieving this goal requires examination of available genetic resources and identification of genomic regions responsible for manifestation of meat productivity. The aim of the present research was to perform a GWAS for carcass traits in Tsarskoye Selo chicken breed to establish the genetic determinants of meat productivity.

 Materials and methods. Tsarskoye Selo chicken breed (n=96) was used as material for the study. Genotyping data were obtained using the Illumina Chicken 60K SNP iSelectBeadChip, and GWAS analysis was performed using EMMAX with Bonferroni correction. Genome-wide significance was assessed using the simple method in R, the calculation of the effective number of independent tests was performed using the Meff program. Gene annotation was performed via ENSEMBL genome browser, using GRCg6a genome assembly.

 Results. For 8 out of 12 traits, 11 suggestive SNPs (2,31E-05) were obtained on chromosomes 1,3,11,12,15,22,23 and 27. The highest number of SNPs was detected for the thigh muscles (TM) - 3 SNPs, and for breast muscles (BM) - 2 SNPs. For the remaining traits, 1 SNP each was detected. A total of 16 genes associated with immunity (SKAP1, DCAF1, ISCU, TRAFD1), metabolism (GPATCH1, CMKLR1, TBC1D15, RAB21), osteogenesis (GPM6B, RAB9A, TRAPPC2), protein synthesis (RPL6), serotonin biosynthesis and eating behavior (TPH2), myogenesis (AGO3), morphogenesis (UNC5D), and DNA damage response (CLSPN) were identified.

Conclusion. The results obtained can be successfully used in selection programs of Tsarskoye Selo chicken breed, and can be recommended for approbation in other breeds.

Full Text

Restricted Access

About the authors

Anastasiia I. Azovtseva

Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry (RRIFAGB)

Author for correspondence.
Email: ase4ica15@mail.ru
ORCID iD: 0000-0002-2963-378X
SPIN-code: 5784-2786

Junior Researcher, Laboratory of Molecular Genetics

Russian Federation, Saint-Petersburg, Tyarlevo settlement, Moskovskoe shosse, 55a

Anna E. Ryabova

Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry (RRIFAGB)

Email: aniuta.riabova2016@yandex.ru
ORCID iD: 0000-0003-2362-2892
SPIN-code: 4336-0310

Junior Researcher, Laboratory of Molecular Genetics

Russian Federation, Saint-Petersburg, Tyarlevo settlement, Moskovskoe shosse, 55a

Natalia V. Dementieva

Russian Research Institute of Farm Animal Genetics and Breeding — Branch of the L.K. Ernst Federal Research Center for Animal Husbandry (RRIFAGB)

Email: dementevan@mail.ru
ORCID iD: 0000-0003-0210-9344
SPIN-code: 8768-8906

Head of the Laboratory of Molecular Genetics, Leading Researcher, Cand. Biol. Sci.

Russian Federation, Saint-Petersburg, Tyarlevo settlement, Moskovskoe shosse, 55a

References

  1. References
  2. Lourenco DA, Fragomeni BO, Tsuruta S, et al. Accuracy of estimated breeding values with genomic information on males, females, or both: an example on broiler chicken. Genet Sel Evol. 2015;47(1):56. doi: 10.1186/s12711-015-0137-1
  3. Misztal I, Lourenci D, Legarra A. Current status of genomic evaluation. J Anim Sci. 2020;98(4):skaa101. doi: 10.1093/jas/skaa101
  4. Kang H, Lu Y, Zhang W, et al. Genome-wide association study identifies a novel candidate gene for egg production traits in chickens. Anim Genet. 2024;55(3):480-483. doi: 10.1111/age.13427
  5. Xiao L, Qi L, Fu R, et al. A large-scale comparison of the meat quality characteristics of different chicken breeds in South China. Poult Sci. 2024;103(6):103740. doi: 10.1016/j.psj.2024.103740
  6. Hua G, Chen J, Wang J, et al. Genetic basis of chicken plumage color in artificial population of complex epistasis. Anim Genet. 2021;52(5):656-666. doi: 10.1111/age.13094
  7. Chen A, Zhao X, Wen J, et al. Genetic parameter estimation and molecular foundation of chicken beak shape. Poult Sci. 2024;103(6):103666. doi: 10.1016/j.psj.2024.103666
  8. Chen A, Zhao X, Zhao X, et al. Genetic Foundation of Male Spur Length and Its Correlation with Female Egg Production in Chickens. Animals (Basel). 2024;14(12):1780. doi: 10.3390/ani14121780
  9. Pan R, Qi L, Xu Z, et al. Weighted single-step GWAS identified candidate genes associated with carcass traits in a Chinese yellow-feathered chicken population. Poult Sci. 2024;103(2):103341. doi: 10.1016/j.psj.2023.103341
  10. Huang S, He Y, Ye S, et al. Genome-wide association study on chicken carcass traits using sequence data imputed from SNP array. J Appl Genet. 2018;59(3):335-344. doi: 10.1007/s13353-018-0448-3
  11. Zhao D, Liu R, Tan X, et al. Large-scale transcriptomic and genomic analyses reveal a novel functional gene SERPINB6 for chicken carcass traits. J Anim Sci Biotechnol. 2024;15(1):70. doi: 10.1186/s40104-024-01026-3
  12. Kanlisi RA, Amuzu-Aweh EN, Naazie A, et al. Genetic architecture of body weight, carcass, and internal organs traits of Ghanaian local chickens. Front Genet. 2024;15:1297034. doi: 10.3389/fgene.2024.1297034
  13. Zhang H, Shen LY, Xu ZC, et al. Haplotype-based genome-wide association studies for carcass and growth traits in chicken. Poult Sci. 2020;99(5):2349-2361. doi: 10.1016/j.psj.2020.01.009
  14. Zhang Z, Zhong H, Lin S, et al. Polymorphisms of AMY1A gene and their association with growth, carcass traits and feed intake efficiency in chickens. Genomics. 2021;113(2):583-594. doi: 10.1016/j.ygeno.2020.10.041
  15. Tan X, Liu R, Zhao D, et al. Large-scale genomic and transcriptomic analyses elucidate the genetic basis of high meat yield in chickens. J Adv Res. 2024;55:1-16. doi: 10.1016/j.jare.2023.02.016
  16. Miranda C, Batista S, Mateus TL, et al. A Preliminary Investigation of Salmonella Populations in Indigenous Portuguese Layer Hen Breeds. Animals (Basel). 2023;13(21):3389. doi: 10.3390/ani13213389
  17. Stefanetti V, Mancinelli AC, Pascucci L, et al. Effect of rearing systems on immune status, stress parameters, intestinal morphology, and mortality in conventional and local chicken breeds. Poult Sci. 2023;102(12):103110. doi: 10.1016/j.psj.2023.103110
  18. Vakhrameev AB, Dementieva NV, Fedorova ZL, et al. Evaluation of the productivity in the dual-purpose chicken breed Tsarskoselskaya. Ptitsevodstvo. 2024;1:5-11. doi: 10.33845/0033-3239-2024-73-1-5-11 EDN: WAHDEJ. (In Russ.)
  19. Vakhrameev AB, Narushin VG, Larkina TA, et al. Selection-driven chicken phenome and phenomenon of pectoral angle variation across different chicken phenotypes. Livestock Science. 2022;264:105067. doi.org/10.1016/j.livsci.2022.105067
  20. Dadousis C, Somavilla A, Ilska JJ, et al. A genome-wide association analysis for body weight at 35 days measured on 137,343 broiler chickens. Genet Sel Evol. 2021;53(1):70. doi: 10.1186/s12711-021-00663-w
  21. Ryabova AE, Azovtseva AI, Dementieva NV. Influence of the a503g polymorphism in the lcorl gene on the live weight of the Tsarskoye Selo breed. Agrarian bulletin of the North Caucasus. 2023;3:25-28. doi: 10.31279/2222-9345-2023-14-51-25-28. EDN: JKPUNL. (In Russ.)
  22. Devatkal SK, Naveena BM, Kotaiah T. Quality, composition, and consumer evaluation of meat from slow-growing broilers relative to commercial broilers. Poult Sci. 2019;98(11):6177-6186. doi: 10.3382/ps/pez344
  23. Petracci M, Mudalal S, Soglia F, Cavani C. Meat quality in fast-growing broiler chickens. World’s Poultry Science Journal. 2015;71:363-374. doi: 10.1017/S0043933915000367
  24. Hampton JO, Hyndman TH, Allen BL, Fischer B. Animal Harms and Food Production: Informing Ethical Choices. Animals (Basel). 2021;11(5):1225. doi: 10.3390/ani11051225
  25. Lee SB, Shewale JG. DNA Extraction Methods in Forensic Analysis. Encyclopedia of Analytical Chemistry. New-Jersey, USA: John Wiley & Sons, Ltd. 2006:1-18. ISBN: 9780470027318. doi: 10.1002/9780470027318
  26. Chini CC, Chen J. Human claspin is required for replication checkpoint control. J Biol Chem. 2003;278(32):30057-30062. doi: 10.1074/jbc.M301136200
  27. Yuan J, Sun C, Dou T, et al. Identification of Promising Mutants Associated with Egg Production Traits Revealed by Genome-Wide Association Study. PLoS one. 2015;10(10):e0140615. doi: 10.1371/journal.pone.0140615
  28. Zhao X, Tang S, Lei Z, et al. circAGO3 facilitates NF-κB pathway-mediated inflammatory atrophy in chicken skeletal muscle via the miR-34b-5p/TRAF3 axis. Int J Biol Macromol. 2024;283(3):137614. doi: 10.1016/j.ijbiomac.2024.137614
  29. Rajasekharan S, Kennedy TE. The netrin protein family. Genome Biol. 2009;10(9):239. doi: 10.1186/gb-2009-10-9-239
  30. Takemoto M, Hattori Y, Zhao H, et al. Laminar and Areal Expression of Unc5d and Its Role in Cortical Cell Survival. Cereb Cortex. 2011;21(8):1925-1934. doi: 10.1093/cercor/bhq265
  31. Habimana R, Ngeno K, Okeno TO, et al. Genome-Wide Association Study of Growth Performance and Immune Response to Newcastle Disease Virus of Indigenous Chicken in Rwanda. Front Genet. 2021;12:723980. doi: 10.3389/fgene.2021.723980
  32. Liu C, Raab M, Gui Y, Rudd CE. Multi-functional adaptor SKAP1: regulator of integrin activation, the stop-signal, and the proliferation of T cells. Front Immunol. 2023;12:1192838. doi: 10.3389/fimmu.2023.1192838
  33. Huang F, Yao W, Sun B, Fujinaga K. DCAF1 inhibits the NF-κB pathway by targeting p65. Immunol Lett. 2022;249:33-42. doi: 10.1016/j.imlet.2022.08.005
  34. Yang Q, Liu H, Xi Y, et al. Genome-wide association study for bone quality of ducks during the laying period. Poult Sci. 2024;103(5):103575. doi.org/10.1016/j.psj.2024.103575
  35. Azovtseva AI, Dementieva NV. Factors affecting chicken bone strength. Genetics and breeding of animals. 2023;3:74-85. doi: 10.31043/2410-2733-2023-3-74-85. EDN: FFLJXL. (In Russ.)
  36. Montealegre S, Lebigot E, Debruge H, et al. FDX2 and ISCU Gene Variations Lead to Rhabdomyolysis With Distinct Severity and Iron Regulation. Neurol Genet. 2022;8(1):e648. doi: 10.1212/nxg.0000000000000648
  37. Legati A, Reyes A, Ceccatelli Berti C, et al. A novel de novo dominant mutation in ISCU associated with mitochondrial myopathy. J Med Genet. 2017;54(12):815-824. doi: 10.1136/jmedgenet-2017-104822
  38. Saha PP, Kumar SKP, Srivastava S, et al. The presence of multiple cellular defects associated with a novel G50E iron-sulfur cluster scaffold protein (ISCU) mutation leads to development of mitochondrial myopathy. J Biol Chem. 2014;289(15):10359-10377. doi: 10.1074/jbc.M113.526665
  39. Zheng A, Zhang A, Chen Z, et al. Molecular mechanisms of growth depression in broiler chickens (Gallus Gallus domesticus) mediated by immune stress: a hepatic proteome study. J Anim Sci Biotechnol. 2021;12(1):90.doi: 10.1186/s40104-021-00591-1
  40. Witwicka H, Jia H, Kutikov A, et al. TRAFD1 (FLN29) Interacts with Plekhm1 and Regulates Osteoclast Acidification and Resorption. PLoS One. 2015;10(5):e0127537. doi: 10.1371/journal.pone.0127537
  41. Hou X, Zhang R, Yang M, et al. Characteristics of Transcriptome and Metabolome Concerning Intramuscular Fat Content in Beijing Black Pigs. J Agric Food Chem. 2023;71(42):15874-15883. doi: 10.1021/acs.jafc.3c02669
  42. Khatter H, Myasnikov AG, Natchiar S., Klaholz BP Structure of the human 80S ribosome. Nature. 2015;520(7549):640-645. oi:10.1038/nature14427
  43. Feng X, Cao X, Zhu R, Huang J. Selection and validation of reference genes for RT-qPCR in adipose and longissimus dorsi muscle tissues of buffalo. Anim Biotechnol. 2022;33(3):526-535. doi: 10.1080/10495398.2020.1811715
  44. Uechi T, Nakajima Y, Nakao A, et al. Ribosomal protein gene knockdown causes developmental defects in zebrafish. PLoS One. 2006;1(1):e37. doi: 10.1371/journal.pone.0000037
  45. Estienne A, Bernardi O, Ramé C, et al. The influence of selection in wild pheasant (Phasianus colchicus) breeding on reproduction and the involvement of the chemerin system. Poult Sci. 2023;102(1):102248. doi: 10.1016/j.psj.2022.102248
  46. Estienne A, Brossaud A, Ramé C, et al. Chemerin is secreted by the chicken oviduct, accumulates in egg albumen and could promote embryo development. Sci Rep. 2022;12(1):8989. doi: 10.1038/s41598-022-12961-4
  47. Bernardi O, Ramé C, Reverchon M, Dupont J. Expression of chemerin and its receptors in extra-embryonic annexes and role of chemerin and its GPR1 receptor in embryo development in layer and broiler hens. Poult Sci. 2024;103(2):103339. doi: 10.1016/j.psj.2023.103339
  48. Ophélie B, Christelle R, Maxime R, et al. Chemerin abundance in egg white and its expression with receptors in extra-embryonic annexes of Pekin ducks: implications for embryo development. Poult Sci. 2024;103(9):103997. doi: 10.1016/j.psj.2024.103997
  49. Ernst MC, Haidl ID, Zúñiga LA, et al. Disruption of the chemokine-like receptor-1 (CMKLR1) gene is associated with reduced adiposity and glucose intolerance. Endocrinology. 2012;153(2):672-682. doi: 10.1210/en.2011-1490
  50. Xu J, Li Y, Lv Y, et al. Molecular Evolution of Tryptophan Hydroxylases in Vertebrates: A Comparative Genomic Survey. Genes (Basel). 2019;10(3):203. doi: 10.3390/genes10030203
  51. Li S, Li X, Wang K, et al. Gut microbiota intervention attenuates thermogenesis in broilers exposed to high temperature through modulation of the hypothalamic 5-HT pathway. J Anim Sci Biotechnol. 2023;14(1):159. doi: 10.1186/s40104-023-00950-0
  52. Jiang J, Qi L, Lv Z, et al. Dietary stevioside supplementation increases feed intake by altering the hypothalamic transcriptome profile and gut microbiota in broiler chickens. J Sci Food Agric. 2021;101(5):2156-2167. doi: 10.1002/jsfa.10838.
  53. Peralta ER, Martin BC, Edinger AL. Differential effects of TBC1D15 and mammalian Vps39 on Rab7 activation state, lysosomal morphology, and growth factor dependence. J Biol Chem. 2010;285(22):16814-16821. doi: 10.1074/jbc.M110.111633
  54. Wu J, Cheng D, Liu L, et al. TBC1D15 affects glucose uptake by regulating GLUT4 translocation. Gene. 2019;683:210-215. doi: 10.1016/j.gene.2018.10.025
  55. Turcot V, Lu Y, Highland HM, et al. Protein-altering variants associated with body mass index implicate pathways that control energy intake and expenditure in obesity. Nat Genet. 2018;50(1):26-41. doi: 10.1038/s41588-017-0011-x
  56. Anderson HC. Matrix vesicles and calcification. Curr Rheumatol Rep. 2003;5(3):222-226. doi: 10.1007/s11926-003-0071-z
  57. Drabek K, van de Peppel J, Eijken M, van Leeuwen JP. GPM6B regulates osteoblast function and induction of mineralization by controlling cytoskeleton and matrix vesicle release. J Bone Miner Res. 2011;26(9):2045-2051. doi: 10.1002/jbmr.435
  58. Thant L, Kakihara Y, Kaku M, et al. Involvement of Rab11 in osteoblastic differentiation: Its up-regulation during the differentiation and by tensile stress. Biochem Biophys Res Commun. 2022;624:16-22. doi: 10.1016/j.bbrc.2022.07.061
  59. Fedorov VB, Goropashnaya AV, Tøien Ø, et al. Preservation of bone mass and structure in hibernating black bears (Ursus americanus) through elevated expression of anabolic genes. Funct Integr Genomics. 2012;12(2):357-365. doi: 10.1007/s10142-012-0266-3
  60. Yunis JJ, Yunis LK. The family reported to have X-linked Dyggve-Melchior-Clausen syndrome instead has X-linked SEDT caused by a novel TRAPPC2 frameshift variant. Clin Genet. 2023;103(6):720-722. doi: 10.1111/cge.14301
  61. Lou G, Zhao Y, Zhao H, et al. Functional analysis of a novel nonsense variant c.91A>T of the TRAPPC2 gene in a Chinese family with X-linked recessive autosomal spondyloepiphyseal dysplasia tarda. Front Genet. 2023;14:1216592. doi: 10.3389/fgene.2023.1216592

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 89324 от 21.04.2025.