ENVIRONMENTAL STRESS AND MUTAGENESIS IN ENTERIC AND NON-ENTERIC BACTERIA



Cite item

Full Text

Abstract

Mutations are fundamental for evolution. For many years it has been thought that mutagenesis occurs only in dividing cells. Now it is clear that mutations arise in non-dividing or slowly dividing microorganisms. Natural populations spend most of the time in stressful environments where their growth rate is highly reduced. Thus, the existence of a mutagenesis process, independent of multiplication (stress-induced mutagenesis, SIM), might have a profound evolutionary role. In the presented paper we review the stateof-the-art in enteric and non-enteric bacteria. We describe different experimental systems as well as the mechanisms and models presented to explain the huge amount of data obtained in more than twenty years of research.

About the authors

Nora Babudri

University of Perugia, Perugia, Italy

Email: babudri@upihg.it

Hovirag Lancioni

University of Pavia, Pavia, Italy

Email: lancioni@kataweb.com

Alessandro Achilli

University of Pavia, Pavia, Italy

Email: achilli@unipg.it.

References

  1. Ryan F. J., 1995. Spontaneous mutations in non-dividing bacteria//Genetics. Vol. 40. P. 726-738.
  2. Luria S. E., Delbruck M., 1943. Mutations of bacteria from virus sensitivity to virus resistance//Genetics. Vol. 28. P. 491-511.
  3. Cairns J., Overbaugh J., Miller S., 1988. The origin of mutants//Nature. Vol. 335. P. 142-145.
  4. Foster P. L., 1997. Nonadaptive mutations occur on the F' episome during adaptive mutation conditions in Escherichia coli//J. Bacteriol. Vol. 179. P. 1550-1554.
  5. Torkelson J., Harris R. S., Lombardo M. J., Nagendran J., Thulin C., Rosenberg S. M., 1997. Genomewide hypermutation in a subpopulation of stationaryphase cells underlies recombination-dependent adaptive mutation//EMBO J. Vol. 16. P. 3303-3311.
  6. Rosche W. A., Foster P. L., 1999. The role of transient hypermutators in adaptive mutation in Escherichia coli//Proc. Natl. Acad. Sci USA. Vol. 96. P. 6862-6867.
  7. Rosenberg S. M., 2001. Evolving responsively: adaptive mutation//Nat. Rev. Genet. Vol. 2. P. 504-515.
  8. Heidenreich E., 2007. Adaptive mutation in Saccharomyces cerevisiae//Crit. Rev. Biochem. Mol. Biol. Vol. 42. P. 285-311.
  9. Galhardo R. S., Hastings P. J., Rosenberg S. M., 2007. Mutation as a stress response and the regulation of evolvability//Crit. Rev. Biochem. Mol. Biol. Vol. 42. P. 399-435.
  10. Foster P. L., 2007. Stress-induced mutagenesis in bacteria//Crit. Rev. Biochem. Mol. Biol. Vol. 42. P. 373-397.
  11. Roth J. R., Kugelberg E., Reams A. B., Kofoid E., Andersson D. I., 2006. Origins of mutations under selection: The adaptive mutation controversy//Ann. Rev. Microbiol. Vol. 60. P. 477-501.
  12. Tennailon O., Denamur E., Matic I., 2004. Evolutionary significance of stress-induced mutagenesis in bacteria//Trends Microbiol. Vol. 12. P. 264-270.
  13. Kivisaar M., 2010. Mechanisms of stationary-phase mutagenesis in bacteria: mutational processes in pseudomonads//FEMS Microbiol. Lett. Vol. 12. P. 1-14.
  14. Cairns J., Foster P. L., 1991. Adaptive reversion of a frameshift mutation in Escherichia coli//Genetics. Vol. 128. P. 695-701.
  15. Kugelberg E., Kofoid E., Reams A. B., Andersson D. I., Roth J. R., 2006. Multiple pathways of selected gene amplification during adaptive mutation//Proc. Natl. Acad. Sci USA. Vol. 103. P. 17319-17324.
  16. Foster P. L., Trimarchi J. M., 1994. Adaptive reversion of a frameshift mutation in Escherichia coli by simple base deletions in homopolimeric runs//Science. Vol. 265. P. 407-409.
  17. Rosenberg S. M., Longerich S., Gee P., Harris R. S., 1994. Adaptive mutation by deletions in small mononucleotide repeats//Science. Vol. 265. P. 405-407.
  18. Hastings P. J., Bull H. J., Klump J. R., Rosenberg S. M., 2000. Adaptive amplification: an inducible chromosomal instability mechanism//Cell. Vol. 103. P. 723-731.
  19. Slack A., Thornton P. C., Magner D. B. Rosenberg S. M., Hastings P. J., 2006. On the mechanism of gene amplification induced under stress in Escherichia coli//Plos Genet. Vol. 2. e48.
  20. Hastings P. J., 2007. Adaptive amplification//Crit. rev. Biochem. Mol. Biol. Vol. 42. P. 285-311.
  21. Torkelson J., Harris R. B., Lombardo M. J., Nagendran J., Thulin C., Rosenberg S., 1997. Genome-wide hypermutation in a subpopulation of stationary-phase cells underlies recombination-dependent adaptive mutation//EMBO J. Vol. 16. P. 3303-3311.
  22. Hall B. G., 1990. Spontaneous point mutations that occur more often when advantageous than when neutral//Genetics. Vol. 126. P. 5-16.
  23. Harris R. S., Longerich S., Rosenberg S. M., 1994. Recombination in adaptive mutation//Science. Vol. 264. P. 258-260.
  24. Ninio J., 1991. Transient mutators: a semiquantitative analysis of the influence of translation and transcription errors on mutation rates//Genetics. Vol. 129. P. 957-962.
  25. Foster P. L., 1993. Adaptive mutation: the use of adversity//Ann. Rev. Microbiol. Vol. 47. P. 467-504.
  26. Foster P. L., Trimarchi J. M., Maurer R. A., 1996. Two enzymes, both of which possess recombination intermediates, have opposite effects on adaptive mutation in Escherichia coli//Genetics. Vol. 142. P. 25-37.
  27. Harris R. S., Ross K. J., Rosenberg S. M., 1996. Opposing roles of the Holliday junction processing system of Escherichia coli in recombination-dependent adaptive mutation//Genetics. Vol. 142. P. 681-691.
  28. Friedberg E. C., Walker G. C., Siede W., Wood R. D., Schultz R. A. and Ellenberger T., 2005. DNA Repair and Mutagenesis: Second Edition//ASM press Washington, D. C.
  29. Taddei F., Matic I., Radman M., 1995. cAMP-dependent SOS induction and mutagenesis in resting bacterial populations//Proc. Natl. Acad. Sci USA. Vol. 92. P. 11736-11740.
  30. Napolitano R., Janel-Bintz R. Wagner J., Fuchs R. P. P., 2000. All three SOS-inducible DNA polymerases (Pol II, PolIV and PolV) are involved in induced mutagenesis//EMBOJ. Vol. 19. P. 6259-6265.
  31. Tang M., Pham P., Shen X., Taylor J.-S., O'Donnell M., Woodgate R., Goodman M. F., 2000. Roles of E.coli DNA polymerases IV and V in lesion-targeted and untargeted SOS mutagenesis//Nature. Vol. 404. P. 1014-1018.
  32. GalharDo R. S., Do R., Yamada M., Friedberg E. C., Hastings P. J., Nohmi T., Rosenberg S. M., 2009. DinB up regulation is the role of the SOS response in stressinduced mutagenesis in Escherichia coli//Genetics. Vol. 182. P. 55-68.
  33. Layton J. C., Foster P. L., 2003. Error-prone DNA polymerase IV is controlled by the stress-response sigma factor, RpoS, in Escherichia coli//Mol Microbiol. Vol. 50. P. 549-561.
  34. Hengge-Aronis R., 2002. Signal transduction and regulatory mechanisms involved in control of the σS (RpoS) subunit of RNA polymerase//Microbiol. Mol. Biol. Rev. Vol. 66. P. 373-395.
  35. Weber H., Polen T., Heuveling J., Wendish V. F., Hengge-Aronis R., 2005. Genome-wide analysis of the general stress response network in Escherichia coli: σSdependent genes, promoters, and sigma factor selectively//J. Bacteriol. Vol. 187. P. 1591-1603.
  36. Li G.-M., 2008. Mechanisms and functions of DNA mismatch repair//Cell Research. Vol. 18. P. 85-98.
  37. Foster P. L. and Trimarchi J. M., 1994. Adaptive reversion of a frameshift mutation in Escherichia coli by simple base deletions in homopolimeric runs//Science. Vol. 265. P. 407-409.
  38. Rosenberg S. M, Longerich P., Gee P., Harris R. S., 1994. Adaptive mutations by deletions in small mononucleotide repeats//Science. Vol. 265. P. 405-407.
  39. Longerich S., Galloway A. M., Harris R. S., Wong C., Rosenberg S. M., 1995. Adaptive mutation sequences reproduced by mismatch repair deficiency//Proc. Natl. Acad. Sci USA. Vol. 92. P. 12017-12020.
  40. Harris R. S., Feng G., Ross K. J., Sidhu R., Thulin C., Longerich S., Szigety S. K., Winkler M. E., Rosenberg S. M., 1997. Mismatch repair protein MutL becomes limiting during stationary-phase mutation//Genes Dev. Vol. 11. P. 2426-2437.
  41. Harris R. S., Feng G., Ross K. J., Sidhu R., Thulin C., Longerich S., Szigety S. K., Hastings P. J., Winkler M. E., Rosenberg S. M., 1999. Mismatch repair is diminished during stationary-phase mutation//Mut. Res. Vol. 437. P. 51-60.
  42. Feng G., Tsui H. C., Winkler M. E., 1996. Depletion of the cellular amounts of the MutS and MutH methyl-directed mismatch repair proteins in stationary-phase Escherichia coli K12 cells//J. Bacteriol. Vol. 178. P. 2388-2396.
  43. Foster P. L., Trimarchi J. M., 1995. Adaptive reversion of an episomal frameshift mutation in Escherichia coli requires conjugal functions but not actual conjugation//Proc. Natl. Acad. Sci USA. Vol. 92. P. 5487-5490.
  44. Radicella J. P., Park P. U., Fox M. S., 1995. Adaptive mutation in Escherichia coli: A role for conjugation//Science. Vol. 268. P. 418-420.
  45. Shee C., Gibson J. L., Darrow M. C., Gonzales C., Rosenberg S. M., 2011. Impact of stress-inducible switch to mutagenic repair of DNA breaks on mutation in Escherichia coli//Proc. Natl. Acad. SciUSA. Vol. 108. P. 13659-13664.
  46. Shee C., Ponder R., Gibson J. L., Rosenberg S. M., 2011. What limits the efficiency of Double-Strand Break-Dependent Stress-Induced mutation in Escherichia coli?//J. Mol. Microbiol. Biotechnol. Vol. 21. P. 8-19.
  47. Lombardo M. J., Aponyi I., Rosenberg S. M., 2004. General stress response regulator RpoS in adaptive mutation and amplification in Escherichia coli//Genetics. Vol. 166. P. 669-680.
  48. McKenzie G. J., Lee P. L., Lombardo M. J., Hastings P. J., Rosenberg S. M., 2001. SOS mutator DNA polymerase IV functions in adaptive mutation and not adaptive amplification.//Mol. Cell. Vol. 7. P. 571-579.
  49. Frost L. S., Manchak J., 1998. F‑phenocopies: characterization of expression of the F transfer region in stationary phase//Microbiol. Vol. 144. P. 2579-2587.
  50. Hastings P. J., Hersh M. N., Thornton P. C., Fonville N. C., Slack A., Frish R. L., Ray M. P., Harris R. S., Leal S. M., Rosenberg S. M., Competition of Escherichia coli DNA polymerases I, II and III with DNA Pol IV in stressed cells//Plos. One. Vol. 5. P. 1-10.
  51. Rosenberg S. M., 2010. Spontaneous mutation: realtime in living cells.//Curr. Biol. Vol. 20. R. 810-811.
  52. Drlica K., Zhao X., 1997. DNA gyrase, topoisomerase IV, and the 4‑quinolones//Microbiol. Mol. Biol. Rev. Vol. 61. P.377-392.
  53. Riesenfeld C., Everett M., Piddock L. J., Hall B. G., 1997. Adaptive mutations produce resistance to ciprofloxacin//Antimicrob Agents. Vol. 41. P. 2059-2060.
  54. Petrosino J. F., Pendleton A. R., Weiner J. H., Rosenberg S. M., 2002. Chromosomal system for studying AmpC-mediated beta-lactam resistance mutation in Escherichia coli//Antimicrob. Agents Chemother. Vol. 46. P. 1535-1539.
  55. Petrosino J. F., Galhardo R. S., Morales L. D., Rosenberg S. M., 2009. Stressinduced beta-lactam antibiotic resistance mutation and sequences of stationary-phase mutations in the Escherichia coli chromosome//J. Bacteriol. Vol. 191. P. 5881-5889.
  56. Cirz R. T., Chin J. K., Andes D. R., de Crecy-Lagard V., Craig W. A., Romesberg F. E., 2005. Inhibition of mutation and combating the evolution of antibiotic resistance//PLoS Biol. Vol. 3. e 176.
  57. Sung H. M., Yasbin R. E., 2002. Adaptive, or stationaryphase, mutagenesis, a component of bacterial differentiation in Bacillus subtilis//J. Bacteriol. Vol. 184. P. 5641-5653.
  58. Pedraza-Reyes M., Yasbin R. E., 2004. Contribution of the mismatch DNA repair system to the generation of stationary-phase-induced mutants of Bacillus subtilis//J Bacteriol. Vol. 186. P. 6485-6491.
  59. Robleto E. A., Yasbin R., Ross C., Pedraza-Reyes M., 2007. Stationary phase mutagenesis in B. subtilis: a paradigm to study genetic diversity programs in cells under stress//Crit. Rev. Biochem. Mol. Biol. Vol. 42. P. 327-329.
  60. Vidales L. E., Cárdenas L. C., Robleto E., Yasbin R. E., Pedraza-Reyes M., 2009. Defects in the error prevention oxidized guanine system potentiate stationaryphase mutagenesis in Bacillus subtilis//J. Bacteriol. Vol. 191. P. 506-513.
  61. Debora B. N., Vidales L. E., Ramírez R., Ramírez M., Robleto E. A., Yasbin R. E., Pedraza-Reyes M., 2011. Mismatch repair modulation of MutY activity drives Bacillus subtilis stationary-phase mutagenesis.//J. Bacteriol. Vol. 193. P. 236-245.
  62. Benov L., Fridovich I., 1996. The rate of adaptive mutatagenesis in Escherichia coli is enhanced by oxygen (superoxide)//Mutat. Res. Vol. 357. P. 231-236.
  63. Bridges B. A., Sekiguchi M., Tajiri T., 1996. Effect of mutY and mutM/fpg‑1 mutations on starvation-associated mutation in Escherichia coli: implications for the role of 7,8‑dihydro‑8‑oxoguanine//Mol. Gen. Genet. Vol. 251. P. 352-357.
  64. Bridges B. A., Foster P. L., Timms A. R., 2001. Effect of endogenous carotenoids on "adaptive" mutation in Escherichia coli FC40//Mutat. Res. Vol. 473. P. 109-119.
  65. López-Olmos K., Hernández M. P., Contreras-Garduño J. A., Robleto E. A., Setlow P., Yasbin R. E., Pedraza-Reyes M., 2012. Role of Endonuclease V, Uracil-DNA Glycosylase and Mismatch Repair in Bacillus subtilis DNA Base-Deamination-Induced Mutagenesis.//J. Bacteriol. Vol. 194. P. 243-252.
  66. Kasak L., Hõrak R., Kivisaar M., 1997. Promotercreating mutations in Pseudomonas putida: a model system for the study of mutation in starving bacteria//Proc. Natl. Acad. Sci USA. Vol. 94. P. 3134-3139.
  67. Finkel S. E., 2006. Long-term survival during stationary phase: evolution and the GASP phenotype//Nat. Rev. Microbiol. Vol. 4. P. 113-120.
  68. Roth J. R., Kofoid E., Roth F. P., Berg O. G., Serger J., Andersson D. I., 2003. Regulating general mutation rates: examination of the hyper mutable state model for Cairnsian adaptive mutation//Genetics. Vol. 163. P. 1483-1496.
  69. Andersson D. I., Slechta E. S., Roth J. R., 1998. Evidence that gene amplification underlies adaptive mutability of the bacterial lac operon//Science. Vol. 282. P. 1133-1135.
  70. Andersson D. I., Levin B. R., 1999. The biological cost of antibiotic resistance//Curr. Opin. Microbiol. Vol. 2. P. 489-493.
  71. Pränting M., Andersson D. I., 2011. Escape from growth restriction in small colony variants of Salmonella typhimurium by gene amplification and mutation//Mol. Microbiol. Vol. 79. P. 305-315.
  72. Pränting M., Andersson D. I., 2010. Mechanisms and physiological effects of protamine resistance in Salomonella enterica serovar Typhimurium LT2//J Antimicrob Chemoter. Vol. 65. P. 876-887.
  73. Yang Z., Lu Z., Wang A., 2001. Study of adaptive mutations in Salmonella typhimurium by using a superrepressing mutant of a trans regulatory gene pur//Mutat. Res. Vol. 484. P. 95-102.
  74. Quiñones-Soto S., Roth J. R., 2011. Effect of growth under selection on appearance of chromosomal mutations in Salmonella enterica//Genetics. Vol. 189. P. 37-53.
  75. Bjedov I., Tenaillon O., Gérard B, Souza V., Denamur E., Radman M., Taddei F., Matic I., 2003. Stress-induced mutagenesis in bacteria.//Science. Vol. 300. P. 1404-1409.
  76. Wrande M., Roth J. R., Hughes D., 2008. Accumulation of mutants in «aging» bacterial colonies is due to growth under selection, not stress-induced mutagenesis//Proc. Natl. Acad. Sci USA. Vol. 105. P. 11863-11868.
  77. Wright B. E., Longacre A., Reimers J. M., 1999. Hypermutation in derepressed operons of Escherichia coli K12//Proc. Natl. Acad. Sci USA Vol. 96. P. 5089-5094.
  78. Bridges B. A., 1995. Starvation-associated mutation in Escherichia coli strains defective in transcription repair coupling factor//Mutat. Res. Vol. 329. P. 49-56.
  79. Barinovi D., Ghelardini P., Di Lallo G., Paolozzi L., 2003. Mutations arise independently of transcription in non-dividing bacteria//Mol. Gen. Genomics. Vol. 269. P. 517-525.
  80. Cohen S. E., Walker G. C., 2010. The transcription elongation factor NusA is required for stress-induced mutagenesis in Escherichia coli//Curr. Biol. Vol. 20. P. 80-85.
  81. Greenblatt J., Li J., 1981. Interaction of the sigma factor and the nusA gene protein of E. coli with RNA polymerase in the initiation-termination cycle of transcription//Cell. Vol. 24. P. 421-428.
  82. Ross C., Pybus C., Pedraza-Reyes M., Sung H. M., Yasbin R. E., Robleto E., 2006. Novel role of mfd: effects on stationary-phase mutagenesis in Bacillus subtilis//J. Bacteriol. Vol. 188. P. 7512-7520.
  83. Pybus C., Pedraza-Reyes M., Ross C. A., Martin H., Ona K., Yasbin R. E., Robleto E., 2010. Transcription-associated mutation in Bacillus subtilis cells under stress//J. Bacteriol. Vol. 192. P. 3321-3328.
  84. Wright B. E., 2004. Stress-directed adaptive mutations and evolution//Mol. Microbiol. Vol. 52. P. 643-650.
  85. Clauson C. L., Oestreich K. J., Austin J. W., Doetsch P. W., 2010. Abasic sites and strand breaks in DNA cause transcriptional mutagenesis in Escherichia coli.//Proc. Natl. Acad. Sci USA. Vol. 107. P. 3657-3662.
  86. Doetsch P. W., 2002. Transletion synthesis by RNA polymerases: occurrence and biological implications for transcriptional mutagenesis//Mut. Res. Vol. 510. P. 131-140.
  87. Babudri N., Lucaccioni A., Achilli A., 2006. Adaptive mutagenesis in the yeast Saccharomyces cerevisiae//Ecological Genetics. Vol. 4. P. 20-28.
  88. Roth J. R., 2010. Genetic adaptation: a new piece for a very old puzzle//Curr. Biol. Vol. 20. P 15-17.

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2012 Babudri N., Lancioni H., Achilli A.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 65617 от 04.05.2016.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies