Analysis of the pathogenic CYP21A2 gene variants in patients with clinical, biochemical and combined manifestations of hyperandrogenism

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The association of heterozygous carriage of pathogenic variants in the CYP21A2 gene with various manifestations of hyperandrogenism remains poorly understood to date.

AIM: The aim of this study was to analyze the relationship between the carriage of pathogenic variants in the CYP21A2 gene in women and various manifestations of hyperandrogenism.

MATERIALS AND METHODS: Clinical description, hormonal testing and molecular genetic analysis of the CYP21A2 gene were performed in 97 women with clinical, biochemical and combined manifestations of hyperandrogenism and in 46 people in the control group. The mean age of the patients was 27.3 ± 0.6 years. Levels of 17-hydroxyprogesterone, dehydroepiandrosterone sulfate and androstenedione were measured in the blood serum of the study participants. To identify pathogenic variants in the CYP21A2 gene, we used next generation sequencing, restriction fragment length polymorphism analysis, real-time polymerase chain reaction, and multiplex ligation-dependent probe amplification analysis. A statistical analysis of the frequency of pathogenic CYP21A2 gene variants in the study groups and hormone levels in different study subgroups was carried out.

RESULTS: In patients with hirsutism, acne, menstrual irregularity, miscarriage and infertility, pathogenic variants in the CYP21A2 gene were identified in 31% (30/97) of cases in the heterozygous state and in 6% (5/97) of cases in the homozygous state. The frequency of these variants (in the heterozygous state only) was significantly higher — 6.5% (3/46) of cases, when compared to the control group (p < 0.0001). The identified pathogenic variants included both single nucleotide substitutions such as P31L (n = 1), I2splice (n = 1), V282L (n = 15), I173N (n = 3), Q319X (n = 8), R357W (n = 1), P454S (n = 1), and P483S (n = 1) and deletions of various lengths (n = 10). We found no significant difference in the levels of dehydroepiandrosterone sulfate and androstenedione between heterozygous carriers and the control group and between heterozygous carriers and patients with the wild type CYP21A2 gene (p > 0.05), while 17-hydroxyprogesterone level in the group of patients with heterozygous changes was higher, when compared to the control group (p < 0.001).

CONCLUSIONS: Heterozygous carriage of pathogenic variants in the CYP21A2 gene is associated with manifestations of hyperandrogenism. However, further study of the mechanisms underlying this association is required.

Full Text

Restricted Access

About the authors

Natalia S. Osinovskaya

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; North-Western State Medical University named after I.I. Mechnikov

Author for correspondence.
Email: natosinovskaya@mail.ru
ORCID iD: 0000-0001-7831-9327
SPIN-code: 3190-2307
ResearcherId: K-1168-2018

Cand. Sci. (Biol.)

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034; Saint Petersburg

Olga B. Glavnova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: o.glavnova@mail.ru
SPIN-code: 8040-5425

Doctor endocrinologist, Head of the department of Endocrinology

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Maria I. Yarmolinskaya

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; North-Western State Medical University named after I.I. Mechnikov

Email: m.yarmolinskaya@gmail.com
ORCID iD: 0000-0002-6551-4147
SPIN-code: 3686-3605
ResearcherId: P-2183-2014

MD, Dr. Sci. (Med.), Professor, Professor of the Russian Academy of Sciences

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034; Saint Petersburg

Iskander Yu. Sultanov

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: timbuctu@mail.ru

biologist of the Laboratory of Genomics with the Bioresource Collection Group of the Department of Genomic Medicine

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Dmitry Yu. Klyuchnikov

Dynasty, Samara Regional Medical Center

Email: dmklyu@gmail.com
ORCID iD: 0000-0003-4934-5619
SPIN-code: 4490-5989

Biologist in the Tissue Typing Laboratory

Russian Federation, Samara

Natalia N. Tkachenko

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: liberin@mail.ru
ORCID iD: 0000-0001-6189-3488
SPIN-code: 9633-6701
ResearcherId: K-1734-2018

Cand. Sci. (Biol.)

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Yulia A. Nasykhova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: yulnasa@gmail.com
ORCID iD: 0000-0002-3543-4963
SPIN-code: 9661-9416

Cand. Sci. (Biol.)

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

Andrey S. Glotov

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: anglotov@mail.ru
ORCID iD: 0000-0002-7465-4504
SPIN-code: 1406-0090
ResearcherId: E-8525-2015

Dr. Sci. (Biol.)

Russian Federation, 3 Mendeleevskaya Line, Saint Petersburg, 199034

References

  1. Dobrokhotova YuE, Ragimova ZE, Il’ina IYu, Ibragimova DM. Giperandrogeniya i reproduktivnoe zdorov’e zhenshchiny. 3rd ed. Moscow: GEOTAR Media; 2020. (In Russ.)
  2. Stanczyk FZ. Diagnosis of hyperandrogenism: biochemical criteria. Best Pract Res Clin Endocrinol Metab. 2006;20(2):177−191. doi: 10.1016/j.beem.2006.03.007
  3. Ginekologiya. Natsional’noe rukovodstvo. Ed. by G.M. Savel’eva, G.T. Sukhikh, V.N. Serov, et al. Moscow: GEOTAR Media, 2017. (In Russ.)
  4. Hannah-Shmouni F, Chen W, Merke DP. Genetics of congenital adrenal hyperplasia. Endocrinol Metab Clin North Am. 2017;46(2):435−458. doi: 10.1016/j.ecl.2017.01.008
  5. Armengaud JB, Charkaluk ML, Trivin C, et al. Precocious pubarche: distinguishing late-onset congenital adrenal hyperplasia from premature adrenarche. J Clin Endocrinol Metab. 2009;94(8):2835−2840. DOI: 10.1210/ jc.2009-0314
  6. White PC, Speiser PW, Congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Endocr Rev. 2000;21(3): 245–291. doi: 10.1210/edrv.21.3.0398
  7. Ostlere LS, Rumsby G, Holownia P, et al. Carrier status for steroid 21-hydroxylase deficiency is only one factor in the variable phenotype of acne. Clin Endocrinol. 1998;48(2):209−215. doi: 10.1046/j.13652265.1998.3811205.x
  8. Carmina E, Dewailly D, Escobar-Morreale HF, et al. Non-classic congenital adrenal hyperplasia due to 21-hydroxylase deficiency revisited: an update with a special focus on adolescent and adult women. Hum Reprod Update. 2017;23(5):580–599.
  9. Moran C, Azziz R, Weintrob N, et al. Reproductive outcome of women with 21-hydroxylase-deficient nonclassic adrenal hyperplasia. J Clin Endocrinol Metab. 2006;91(9):3451−3456. doi: 10.1210/jc.2006-0062
  10. Witchel SF. Non-classic congenital adrenal hyperplasia. Steroids. 2013;78(8):747−750. doi: 10.1016/j.steroids.2013.04.010
  11. Bidet M, Bellanne-Chantelot C, Galand-Portier MB, et al. Fertility in women with nonclassical congenital adrenal hyperplasia due to 21-hydroxylase deficiency. J Clin Endocrinol Metab. 2010;95(3):1182–1190.
  12. Neocleous V, Shammas C, Phedonos AA, et al. Phenotypic variability of hyperandrogenemia in females heterozygous for CYP21A2 mutations. Indian J Endocrinol Metab. 2014;18(Suppl 1):S72−S79. doi: 10.4103/2230-8210.145077
  13. Christodoulaki C, Trakakis E, Pergialiotis V, et al. Dehydroepiandrosterone-sulfate, insulin resistance and ovarian volume estimation in patients with polycystic ovarian syndrome. J Family Reprod Health. 2017;11(1):24−29.
  14. Narasimhan ML, Khattab A. Genetics of congenital adrenal hyperplasia and genotype-phenotype correlation. Fertil Steril. 2019;111(1):24−29. doi: 10.1016/j.fertnstert.2018.11.007
  15. Gao Y, Yu B, Mao J, et al. The prevalence of heterozygous CYP21A2 deficiency in patients with idiopathic acne, hirsutism, or both. Endocrine. 2020;67(3):665−672. doi: 10.1007/s12020-019-02104-7
  16. Admoni O, Israel S, Lavi I, et al. Hyperandrogenism in carriers of CYP21 mutations: the role of genotype. Clin Endocrinol. 2006;64(6):645−651. doi: 10.1111/j.1365-2265.2006.02521.x
  17. Paris F, Tardy V, Chalançon A, et al. Premature pubarche in Mediterranean girls: high prevalence of heterozygous CYP21 mutation carriers. Gynecol Endocrinol. 2010;26(5):319−324. doi: 10.3109/09513590903511505
  18. Kelestimur F, Everest H, Dundar M, et al. The frequency of CYP21 gene mutations in Turkish women with hyperandrogenism. Exp Clin Endocrinol Diabetes. 2009;117(5):205−208. doi: 10.1055/s-2008-1081209
  19. Glintborg D, Hermann AP, Brusgaard K, et al. Significantly higher adrenocorticotropin-stimulated cortisol and 17-hydroxyprogesterone levels in 337 consecutive, premenopausal, caucasian, hirsute patients compared with healthy controls. J Clin Endocrinol Metab. 2005;90(3):1347−1353. doi: 10.1210/jc.2004-1214
  20. Witchel SF, Smith R, Tomboc M, Aston CE. Candidate gene analysis in premature pubarche and adolescent hyperandrogenism. Fertil Steril. 2001;75(4):724−730. doi: 10.1016/s0015-0282(00)01798-2
  21. Potau N, Riqué S, Eduardo I, et al. Molecular defects of the CYP21 gene in Spanish girls with isolated precocious pubarche. Eur J Endocrinol. 2002;147(4):485−488. doi: 10.1530/eje.0.1470485
  22. Félix-López X, Riba L, Ordóñez-Sánchez ML, et al. Steroid 21-hydroxylase (P450c21) naturally occurring mutants I172N, V281L and I236n/V237E/M239K exert a dominant negative effect on enzymatic activity when co-expressed with the wild-type protein. J Pediatr Endocrinol Metab. 2003;16(7):1017−1024. doi: 10.1515/jpem.2003.16.7.1017
  23. Lumezi BG, Berisha VL, Pupovci HL, et al. Grading of hirsutism based on the Ferriman-Gallwey scoring system in Kosovar women. Postepy Dermatol Alergol. 2018;35(6):631−635. doi: 10.5114/ada.2018.77615
  24. Sambrook, J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Plainview, N.Y.: Cold Spring Harbor Laboratory Press; 1989.
  25. Xu Z, Chen W, Merke DP, McDonnell NB. Comprehensive mutation analysis of the CYP21A2 gene: an efficient multistep approach to the molecular diagnosis of congenital adrenal hyperplasia. J Mol Diagn. 2013;15(6):745−753. doi: 10.1016/j.jmoldx.2013.06.00
  26. Keen-Kim D, Redman JB, Alanes RU, et al. Validation and clinical application of a locus-specific polymerase chain reaction- and minisequencing-based assay for congenital adrenal hyperplasia (21-hydroxylase deficiency). J Mol Diagn. 2005;7(2):236−246. doi: 10.1016/S1525-1578(10)60550-8
  27. Li H, Handsaker B, Wysoker A, et al. The sequence alignment/map format and samtools. Bioinformatics. 2009;25(16):2078−2079. doi: 10.1093/bioinformatics/btp352
  28. Osinovskaya NS, Ivaschenko TE, Soboleva EL, et al. Analysis of the mutation spectrum of the steroid 21-hydroxylase gene in patients with congenital adrenal hyperplasia. Russian Journal of Genetics. 2000;36(8):955−957.
  29. Lee HH, Tsai FJ, Lee YJ, Yang YC. Diversity of the CYP21A2 gene: A 6.2-Kb TaqI fragment and a 3.2-Kb TaqI fragment mistaken as CYP21A1P. Molecular Genetics and Metabolism. 2006;88:372−377. doi: 10.1016/j.ymgme.2006.03.013
  30. Witchel SF, Lee PA, Suda-Hartman M, Hoffman EP. Hyperandrogenism and manifesting heterozygotes for 21-hydroxylase deficiency. Biochem Mol Med. 1997;62(2):151−158. doi: 10.1006/bmme.1997.2632
  31. Escobar-Morreale HF, San Millán JL, Smith RR, et al. The presence of the 21-hydroxylase deficiency carrier status in hirsute women: phenotype-genotype correlations. Fertil Steril. 1999;72(4):629−638. doi: 10.1016/s0015-0282(99)00317-9
  32. Witchel SF. Congenital adrenal hyperplasia. J Pediatr Adolesc Gynecol. 2017;30(5):520−534. doi: 10.1016/j.jpag.2017.04.001

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. An example of a detected complete deletion of the CYP21A2 gene in the heterozygous state (the arrows show the beginning and end of the deleted sequence). The areas of gene analysis: CYP21A1P, CYP21A2, TNXB, reference gene is marked on the x-axis

Download (344KB)
3. Fig. 2. The frequency of detection of menstrual irregularity, acne, miscarriage, primary infertility and hirsutism in heterozygous carriers of the pathogenic CYP21A2 gene variants and in patients with the wild type, as well as in separate subgroups of patients — with and without the V282L variant

Download (173KB)
4. Fig. 3. The frequency of heterozygous carriers of the pathogenic CYP21A2 gene variants in subgroups of patients with menstrual irregularity, acne, miscarriage, primary infertility and hirsutism

Download (123KB)

Copyright (c) 2022 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies