Uterine fibroids: the role of signaling pathways in the pathogenesis. A literature review

Cover Page
Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Uterine fibroids are one of the most common benign tumors of the female reproductive system, originating from smooth muscle cells of the cervix or uterine body. The controversial issues of the pathogenesis of the disease make equal the various theories of its development and approaches to therapy. To date, there is no single and unambiguous opinion on the causes of the onset and recurrence of uterine fibroids, but thanks to the modern level of molecular medicine, much progress has been made in the study of hormonal and molecular genetic mechanisms of the initiation, formation and growth of the myoma node. The aim of this work was to review the modern aspects of the pathogenesis of uterine fibroids. We analyzed book chapters, original and review articles deposited in the PubMed database and related to the study of the pathogenesis of uterine fibroids from 2000 to 2019. This review presents modern data on the role of sex steroid hormones and their enzyme regulation, as well as growth factors and vitamin D in the pathogenesis of the disease. Particular attention was paid to signaling pathways involved in the regulation of basic cellular processes, in the onset and progression of the disease. It was noted that the activation of signaling pathways such as Wnt / β-catenin, MAPK / ERK, and TGF-β / SMAD plays a significant role in the development of uterine fibroids. Further study of the pathogenesis of the disease is needed for new strategies to design targeted therapy of uterine leiomyoma.

Full Text

Restricted Access

About the authors

Maria I. Yarmolinskaya

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; North-Western State Medical University named after I.I. Mechnikov

Email: m.yarmolinskaya@gmail.com
ORCID iD: 0000-0002-6551-4147
SPIN-code: 3686-3605

Russian Federation, Saint Petersburg

MD, PhD, DSci (Medicine), Professor, Professor of the Russian Academy of Sciences, Head of the Department of Gynecology and Endocrinology, Head of the Diagnostics and Treatment of Endometriosis Center; Professor. The Department of Obstetrics and Gynecology

Nikolay I. Polenov

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: polenovdoc@mail.ru
ORCID iD: 0000-0001-8575-7026

Russian Federation, Saint Petersburg

MD, PhD, Senior Researcher. The Department of Gynecology and Endocrinology

Vladislava V. Kunitsa

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Author for correspondence.
Email: vlada.vlada.91@list.ru
ORCID iD: 0000-0002-8109-8155
SPIN-code: 8990-6955

Russian Federation, Saint Petersburg



  1. Giuliani E, As-Sanie S, Marsh EE. Epidemiology and management of uterine fibroids. Int J Gynaecol Obstet. 2020;149(1):3-9. https://doi.org/10.1002/ijgo.13102.
  2. Stewart EA, Cookson CL, Gandolfo RA, Schulze-Rath R. Epidemiology of uterine fibroids: A systematic review. BJOG. 2017;124(10):1501-1512. https://doi.org/10.1111/1471-0528.14640.
  3. Адамян Л.В., Андреева Е.Н., Киселев С.И., и др. Клинические рекомендации (протокол лечения). Миома матки: диагностика, лечение и реабилитация. – М., 2015. – 50 с. [Adamyan LV, Andreeva EN, Kiselev SI, et al. Klinicheskie rekomendacii. (protokol lecheniya). Mioma matki: diagnostika, lechenie i reabilitaciya. Moscow; 2015. 50 р. (In Russ.)]
  4. Краснопольский В.И., Буянова С.Н., Щукина Н.А., и др. Оперативная гинекология. – 3-е изд. – М.: МЕДпресс-информ, 2017. – 319 c. [Krasnopol`skiy VI, Buyanova SN, Shchukina NA, et al. Operativnaya ginekologiya. 3rd ed. Moscow: MEDpress-inform; 2017. 319 p. (In Russ.)]
  5. Lurie S, Piper I, Woliovitch I, Glezerman M. Age-related prevalence of sonographicaly confirmed uterine myomas. J Obstet Gynaecol. 2005;25(1):42-44. https://doi.org/ 10.1080/01443610400024583.
  6. Jacques D, Marie-Madeleine D. Hormone therapy for intramural myoma-related infertility from ulipristal acetate to GnRH antagonist: A review. Reprod Biomed Online. 2020;41(3):431-442. https://doi.org/10.1016/j.rbmo. 2020.05.017.
  7. Ищенко А.И., Ботвин М.А., Ланчинский В.И. Миома матки: этиология, патогенез, диагностика, лечение. – М.: Видар-М, 2010. – 244 c. [Ishchenko AI, Botvin MA, Lanchinskiy VI. Mioma matki: etiologiya, patogenez, diagnostika, lechenie. Moscow: Vidar-M; 2010. 244 p. (In Russ.)]
  8. Стрижаков А.Н., Давыдов А.И., Чочаева Е.М. Возможности и перспективы консервативной миомэктомии с позиций сохранения репродуктивной функции женщины // Анналы хирургии. − 2016. − Т. 21. − № 1-2. − С. 32−41. [Strizhakov AN, Davydov AI, Chochaeva EM. Рossibilities and prospects of myomectomy from the standpoint of woman reproductive function saving. Russian journal of surgery. 2016;21(1-2):32-41. (In Russ.)]. https://doi.org/10.18821/1560-9502-2016-21-1-32-41.
  9. Maruo T, Ohara N, Wang J, Matsuo H. Sex steroidal regulation of uterine leiomyoma growth and apoptosis. Hum Reprod Update. 2004;10(3):207-220. https://doi.org/10.1093/humupd/dmh019.
  10. Kim JJ, Kurita T, Bulun SE. Progesterone action in endometrial cancer, endometriosis, uterine fibroids, and breast cancer. Endocr Rev. 2013;34(1):130-162. https://doi.org/ 10.1210/er.2012-1043.
  11. Lethaby A, Vollenhoven B, Sowter M. Pre-operative GnRH analogue therapy before hysterectomy or myomectomy for uterine fibroids. Cochrane Database Syst Rev. 2001;(2):CD000547. https://doi.org/10.1002/14651858.CD000547.
  12. Maekawa R, Sato S, Yamagata Y, et al. Genome-wide DNA methylation analysis reveals a potential mechanism for the pathogenesis and development of uterine leiomyomas. PLoS One. 2013;8(6):e66632. https://doi.org/10.1371/journal.pone.0066632.
  13. Tian R, Wang Z, Shi Z, et al. Differential expression of G-protein-coupled estrogen receptor-30 in human myometrial and uterine leiomyoma smooth muscle. Fertil Steril. 2013;99(1):256-263. https://doi.org/10.1016/j.fertnstert.2012.09.011.
  14. Hermon TL, Moore AB, Yu L, et al. Estrogen receptor alpha (ERalpha) phospho-serine-118 is highly expressed in human uterine leiomyomas compared to matched myometrium. Virchows Arch. 2008;453(6):557-569. https://doi.org/10.1007/s00428-008-0679-5.
  15. Barbarisi A, Petillo O, Di Lieto A, et al. 17-beta estradiol elicits an autocrine leiomyoma cell proliferation: Evidence for a stimulation of protein kinase-dependent pathway. J Cell Physiol. 2001;186(3):414-424. https://doi.org/10.1002/1097-4652(2000)9999:999<000::AID-JCP1040>3.0.CO;2-E.
  16. Nierth-Simpson EN, Martin MM, Chiang TC, et al. Human uterine smooth muscle and leiomyoma cells differ in their rapid 17 beta-estradiol signaling: Implications for proliferation. Endocrinology. 2009;150(5):2436-2445. https://doi.org/10.1210/en.2008-0224.
  17. Ishikawa H, Reierstad S, Demura M, et al. High aromatase expression in uterine leiomyoma tissues of African-American women. J Clin Endocrinol Metab. 2009;94(5):1752-1756. https://doi.org/10.1210/jc.2008-2327.
  18. Bulun SE, Simpson ER, Word RA. Expression of the CYP19 gene and its product aromatase cytochrome P450 in human uterine leiomyoma tissues and cells in culture. J Clin Endocrinol Metab. 1994;78(3):736-743. https://doi.org/10.1210/jcem.78.3.8126151.
  19. Bulun SE, Imir G, Utsunomiya H, et al. Aromatase in endometriosis and uterine leiomyomata. J Steroid Biochem Mol Biol. 2005;95(1-5):57-62. https://doi.org/10.1016/ j.jsbmb.2005.04.012.
  20. Shozu M, Murakami K, Inoue M. Aromatase and leiomyoma of the uterus. Semin Reprod Med. 2004;22(1):51-60. https://doi.org/10.1055/s-2004-823027.
  21. Kasai T, Shozu M, Murakami K, et al. Increased expression of type I 17beta-hydroxysteroid dehydrogenase enhances in situ production of estradiol in uterine leiomyoma. J Clin Endocrinol Metab. 2004;89(11):5661-5668. https://doi.org/10.1210/jc.2003-032085.
  22. Olive DL, Lindheim SR, Pritts EA. Non-surgical management of leiomyoma: impact on fertility. Curr Opin Obstet Gynecol. 2004;16(3):239-243. https://doi.org/10.1097/00001703- 200406000-00006.
  23. Salama SA, Nasr AB, Dubey RK, Al-Hendy A. Estrogen metabolite 2-methoxyestradiol induces apoptosis and inhibits cell proliferation and collagen production in rat and human leiomyoma cells: A potential medicinal treatment for uterine fibroids. J Soc Gynecol Investig. 2006;13(8):542-550. https://doi.org/10.1016/j.jsgi.2006.09.003.
  24. Salama SA, Kamel MW, Botting S, et al. Catechol-o-methyltransferase expression and 2-methoxyestradiol affect microtubule dynamics and modify steroid receptor signaling in leiomyoma cells. PLoS One. 2009;4(10):e7356. https://doi.org/10.1371/journal.pone.0007356.
  25. Farber M, Conrad S, Heinrichs WL, Herrmann WL. Estradiol binding by fibroid tumors and normal myometrium. Obstet Gynecol. 1972;40(4):479-486.
  26. Puukka MJ, Kontula KK, Kauppila AJ, et al. Estrogen receptor in human myoma tissue. Mol Cell Endocrinol. 1976;6(1):35-44. https://doi.org/10.1016/0303-7207(76)90042-3.
  27. Kawaguchi K, Fujii S, Konishi I, et al. Mitotic activity in uterine leiomyomas during the menstrual cycle. Am J Obstet Gynecol. 1989;160(3):637-641. https://doi.org/10.1016/s0002-9378(89)80046-8.
  28. Ishikawa H, Ishi K, Serna VA, et al. Progesterone is essential for maintenance and growth of uterine leiomyoma. Endocrinology. 2010;151(6):2433-2442. https://doi.org/10.1210/en.2009-1225.
  29. Yamada T, Nakago S, Kurachi O, et al. Progesterone down-regulates insulin-like growth factor-I expression in cultured human uterine leiomyoma cells. Hum Reprod. 2004;19(4):815-821. https://doi.org/10.1093/humrep/deh146.
  30. Maruo T, Matsuo H, Samoto T, et al. Effects of progesterone on uterine leiomyoma growth and apoptosis. Steroids. 2000;65(10-11):585-592. https://doi.org/10.1016/s0039-128x(00)00171-9.
  31. Shimomura Y, Matsuo H, Samoto T, Maruo T. Up-regulation by progesterone of proliferating cell nuclear antigen and epidermal growth factor expression in human uterine leiomyoma. J Clin Endocrinol Metab. 1998;83(6):2192-2198. https://doi.org/10.1210/jcem.83.6.4879.
  32. Hoekstra AV, Sefton EC, Berry E, et al. Progestins activate the AKT pathway in leiomyoma cells and promote survival. J Clin Endocrinol Metab. 2009;94(5):1768-1774. https://doi.org/10.1210/jc.2008-2093.
  33. Yin P, Lin Z, Reierstad S, et al. Transcription factor KLF11 integrates progesterone receptor signaling and proliferation in uterine leiomyoma cells. Cancer Res. 2010;70(4):1722-1730. https://doi.org/10.1158/0008-5472.CAN-09-2612.
  34. Fiscella K, Eisinger SH, Meldrum S, et al. Effect of mifepristone for symptomatic leiomyomata on quality of life and uterine size: A randomized controlled trial. Obstet Gynecol. 2006;108(6):1381-1387. https://doi.org/10.1097/01.AOG. 0000243776.23391.7b.
  35. Eisinger SH, Bonfiglio T, Fiscella K, et al. Twelve-month safety and efficacy of low-dose mifepristone for uterine myomas. J Minim Invasive Gynecol. 2005;12(3):227-233. https://doi.org/10.1016/j.jmig.2005.01.022.
  36. Donnez J, Tatarchuk TF, Bouchard P, et al. Ulipristal acetate versus placebo for fibroid treatment before surgery. N Engl J Med. 2012;366(5):409-420. https://doi.org/10.1056/NEJMoa1103182.
  37. Donnez J, Tomaszewski J, Vázquez F, et al. Ulipristal acetate versus leuprolide acetate for uterine fibroids. N Engl J Med. 2012;366(5):421-432. https://doi.org/10.1056/NEJMoa1103180.
  38. Donnez J, Vázquez F, Tomaszewski J, et al. Long-term treatment of uterine fibroids with ulipristal acetate. Fertil Steril. 2014;101(6):1565-1573. https://doi.org/10.1016/j.fertnstert.2014.02.008.
  39. Peng L, Wen Y, Han Y, et al. Expression of insulin-like growth factors (IGFs) and IGF signaling: Molecular complexity in uterine leiomyomas. Fertil Steril. 2009;91(6):2664-2675. https://doi.org/10.1016/j.fertnstert.2007.10.083.
  40. Burroughs KD, Howe SR, Okubo Y, et al. Dysregulation of IGF-I signaling in uterine leiomyoma. J Endocrinol. 2002;172(1):83-93. https://doi.org/10.1677/joe.0. 1720083.
  41. Swartz CD, Afshari CA, Yu L, et al. Estrogen-induced changes in IGF-I, Myb family and MAP kinase pathway genes in human uterine leiomyoma and normal uterine smooth muscle cell lines. Mol Hum Reprod. 2005;11(6):441-450. https://doi.org/10.1093/molehr/gah174.
  42. Liang M, Wang H, Zhang Y, et al. Expression and functional analysis of platelet-derived growth factor in uterine leiomyomata. Cancer Biol Ther. 2006;5(1):28-33. https://doi.org/10.4161/cbt.5.1.2234.
  43. Ren Y, Yin H, Tian R, et al. Different effects of epidermal growth factor on smooth muscle cells derived from human myometrium and from leiomyoma. Fertil Steril. 2011;96(4):1015-1020. https://doi.org/10.1016/j.fertnstert. 2011.07.004.
  44. Mizutani CM, Bier E. EvoD/Vo: The origins of BMP signalling in the neuroectoderm. Nat Rev Genet. 2008;9(9):663-677. https://doi.org/10.1038/nrg2417.
  45. Shi Y, Massagué J. Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell. 2003;113(6):685-700. https://doi.org/10.1016/s0092-8674(03)00432-x.
  46. Lee BS, Nowak RA. Human leiomyoma smooth muscle cells show increased expression of transforming growth factor-beta 3 (TGF beta 3) and altered responses to the antiproliferative effects of TGF beta. J Clin Endocrinol Metab. 2001;86(2):913-920. https://doi.org/10.1210/jcem. 86.2.7237.
  47. Arici A, Sozen I. Transforming growth factor-beta3 is expressed at high levels in leiomyoma where it stimulates fibronectin expression and cell proliferation. Fertil Steril. 2000;73(5):1006-1011. https://doi.org/10.1016/s0015-0282 (00)00418-0.
  48. De Falco M, Staibano S, D’Armiento FP, et al. Preoperative treatment of uterine leiomyomas: Clinical findings and expression of transforming growth factor-beta3 and connective tissue growth factor. J Soc Gynecol Investig. 2006;13(4):297-303. https://doi.org/10.1016/j.jsgi.2006. 02.008.
  49. Di Lieto A, De Falco M, Staibano S, et al. Effects of gonadotropin-releasing hormone agonists on uterine volume and vasculature and on the immunohistochemical expression of basic fibroblast growth factor (bFGF) in uterine leiomyomas. Int J Gynecol Pathol. 2003;22(4):353-358. https://doi.org/10.1097/01.PGP.0000070849.25718.73.
  50. Ohara N, Morikawa A, Chen W, et al. Comparative effects of SPRM asoprisnil (J867) on proliferation, apoptosis, and the expression of growth factors in cultured uterine leiomyoma cells and normal myometrial cells. Reprod Sci. 2007;14(8 Suppl):20-27. https://doi.org/10.1177/193371 9107311464.
  51. Deeb KK, Trump DL, Johnson CS. Vitamin D signalling pathways in cancer: Potential for anticancer therapeutics. Nat Rev Cancer. 2007;7(9):684-700. https://doi.org/10.1038/nrc2196.
  52. Halder SK, Osteen KG, Al-Hendy A. 1,25-dihydroxyvitamin D3 reduces extracellular matrix-associated protein expression in human uterine fibroid cells. Biol Reprod. 2013;89(6):150. https://doi.org/10.1095/biolreprod.113.107714.
  53. Halder SK, Goodwin JS, Al-Hendy A. 1,25-Dihydroxyvitamin D3 reduces TGF-beta3-induced fibrosis-related gene expression in human uterine leiomyoma cells. J Clin Endocrinol Metab. 2011;96(4):E754-E762. https://doi.org/10.1210/jc.2010-2131.
  54. Sharan C, Halder SK, Thota C, et al. Vitamin D inhibits proliferation of human uterine leiomyoma cells via catechol-O-methyltransferase. Fertil Steril. 2011;95(1):247-253. https://doi.org/10.1016/j.fertnstert.2010.07.1041.
  55. Bläuer M, Rovio PH, Ylikomi T, Heinonen PK. Vitamin D inhibits myometrial and leiomyoma cell proliferation in vitro. Fertil Steril. 2009;91(5):1919-1925. https://doi.org/ 10.1016/j.fertnstert.2008.02.136.
  56. Tang WY, Ho SM. Epigenetic reprogramming and imprinting in origins of disease. Rev Endocr Metab Disord. 2007;8(2):173-182. https://doi.org/10.1007/s11154-007-9042-4.
  57. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469-480. https://doi.org/ 10.1016/j.cell.2006.10.018.
  58. Levanon D, Goldstein RE, Bernstein Y, et al. Transcriptional repression by AML1 and LEF-1 is mediated by the TLE/Groucho corepressors. Proc Natl Acad Sci U S A. 1998;95(20):11590-11595. https://doi.org/10.1073/pnas. 95.20.11590.
  59. Van Amerongen R, Nusse R. Towards an integrated view of Wnt signaling in development. Development. 2009;136(19):3205-3214. https://doi.org/10.1242/dev.033910.
  60. Van Amerongen R. Alternative Wnt pathways and receptors. Cold Spring Harb Perspect Biol. 2012;4(10):a007914. https://doi.org/10.1101/cshperspect.a007914.
  61. May-Simera HL, Kelley MW. Cilia, Wnt signaling, and the cytoskeleton. Cilia. 2012;1(1):7. https://doi.org/10.1186/2046-2530-1-7.
  62. Goodrich LV, Strutt D. Principles of planar polarity in animal development. Development. 2011;138(10):1877-1892. https://doi.org/10.1242/dev.054080.
  63. Hecht A, Vleminckx K, Stemmler MP, et al. The p300/CBP acetyltransferases function as transcriptional coactivators of beta-catenin in vertebrates. EMBO J. 2000;19(8):1839-1850. https://doi.org/10.1093/emboj/19.8.1839.
  64. Takemaru KI, Moon RT. The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. J Cell Biol. 2000;149(2):249-254. https://doi.org/10.1083/jcb.149.2.249.
  65. Nelson WJ, Nusse R. Convergence of Wnt, beta-catenin, and cadherin pathways. Science. 2004;303(5663):1483-1487. https://doi.org/10.1126/science.1094291.
  66. Moon RT, Bowerman B, Boutros M, Perrimon N. The promise and perils of Wnt signaling through beta-catenin. Science. 2002;296(5573):1644-1646. https://doi.org/10.1126/science.1071549.
  67. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 2006;127(3):469-480. https://doi.org/V10.1016/j.cell.2006.10.018.
  68. Reya T, Clevers H. Wnt signalling in stem cells and cancer. Nature. 2005;434(7035):843-850. https://doi.org/10.1038/nature03319.
  69. Mangioni S, Viganò P, Lattuada D, et al. Overexpression of the Wnt5b gene in leiomyoma cells: Implications for a role of the Wnt signaling pathway in the uterine benign tumor. J Clin Endocrinol Metab. 2005;90(9):5349-5355. https://doi.org/10.1210/jc.2005-0272.
  70. Borsari R, Bozzini N, Junqueira CR, et al. Genic expression of the uterine leiomyoma in reproductive-aged women after treatment with goserelin. Fertil Steril. 2010;94(3):1072-1077. https://doi.org/10.1016/j.fertnstert.2009.03.112.
  71. Tanwar PS, Lee HJ, Zhang L, et al. Constitutive activation of Beta-catenin in uterine stroma and smooth muscle leads to the development of mesenchymal tumors in mice. Biol Reprod. 2009;81(3):545-552. https://doi.org/10.1095/biolreprod.108.075648.
  72. Ono M, Yin P, Navarro A, et al. Paracrine activation of WNT/β-catenin pathway in uterine leiomyoma stem cells promotes tumor growth. Proc Natl Acad Sci U S A. 2013;110(42):17053-17058. https://doi.org/10.1073/pnas. 1313650110.
  73. Kazanets A, Shorstova T, Hilmi K, et al. Epigenetic silencing of tumor suppressor genes: Paradigms, puzzles, and potential. Biochim Biophys Acta. 2016;1865(2):275-288. https://doi.org/10.1016/j.bbcan.2016.04.001.
  74. Есенеева Ф.М., Шалаев О.Н., Оразмурадов А.А., и др. WNT-сигнальный путь при миоме матки // Мать и дитя в Кузбасcе. − 2017. − № 2. − С. 33–38. [Eseneevа FM, Shalaev ON, Orazmuradov AA, et al. Wnt-signal way in myomautery. Mat’ i ditya v Kuzbasse. 2017;(2):33-38. (In Russ.)]
  75. Sun Y, Liu WZ, Liu T, et al. Signaling pathway of MAPK/ERK in cell proliferation, differentiation, migration, senescence and apoptosis. J Recept Signal Transduct Res. 2015;35(6):600-604. https://doi.org/10.3109/10799893.2015.1030412.
  76. Потехина Е.С., Надеждина Е.С. Митоген-активируемые протеинкиназные каскады и участие в них Ste20-подобных протеинкиназ // Успехи биологической химии. − 2002. − Т. 42. − С. 235-256. [Potekhina ES, Nadezhdina ES. Mitogen-aktiviruemye proteinkinaznye kaskady i uchastie v nix Ste20-podobnykh proteinkinaz. Uspekhi biologicheskoy khimii. 2002;42:235-256. (In Russ.)]
  77. Xia D, Tian S, Chen Z, et al. miR302a inhibits the proliferation of esophageal cancer cells through the MAPK and PI3K/Akt signaling pathways. Oncol Lett. 2018;15(3):3937-3943. https://doi.org/10.3892/ol.2018.7782.
  78. Liang C, Wang S, Qin C, et al. TRIM36, a novel androgen-responsive gene, enhances anti-androgen efficacy against prostate cancer by inhibiting MAPK/ERK signaling pathways. Cell Death Dis. 2018;9(2):155. https://doi.org/10.1038/s41419-017-0197-y.
  79. Huang HT, Sun ZG, Liu HW, et al. ERK/MAPK and PI3K/AKT signal channels simultaneously activated in nerve cell and axon after facial nerve injury. Saudi J Biol Sci. 2017;24(8):1853-1858. https://doi.org/10.1016/j.sjbs.2017.11.027.
  80. Chan LP, Liu C, Chiang FY, et al. IL-8 promotes inflammatory mediators and stimulates activation of p38 MAPK/ERK-NF-κB pathway and reduction of JNK in HNSCC. Oncotarget. 2017;8(34):56375-56388. https://doi.org/10.18632/oncotarget.16914.
  81. Chang L, Karin M. Mammalian MAP kinase signalling cascades. Nature. 2001;410(6824):37-40. https://doi.org/ 10.1038/35065000-2001-410:37-40.
  82. Lu Z, Xu S. ERK1/2 MAP kinases in cell survival and apoptosis. IUBMB Life. 2006;58(11):621-631. https://doi.org/ 10.1038/35065000.
  83. Keshet Y, Seger R. The MAP kinase signaling cascades: A system of hundreds of components regulates a diverse array of physiological functions. Methods Mol Biol. 2010;661:3-38. https://doi.org/10.1007/978-1-60761-795-2_1.
  84. Yu L, Saile K, Swartz CD, et al. Differential expression of receptor tyrosine kinases (RTKs) and IGF-I pathway activation in human uterine leiomyomas. Mol Med. 2008;14(5-6):264-275. https://doi.org/10.2119/2007-00101.Yu.
  85. Affolter M, Basler K. The Decapentaplegic morphogen gradient: From pattern formation to growth regulation. Nat Rev Genet. 2007;8(9):663-674. https://doi.org/10.1038/nrg2166.
  86. Connolly EC, Freimuth J, Akhurst RJ. Complexities of TGF-β targeted cancer therapy. Int J Biol Sci. 2012;8(7):964-978. https://doi.org/10.7150/ijbs.4564.
  87. Massagué J, Wotton D. Transcriptional control by the TGF-beta/SMAD signaling system. EMBO J. 2000;19(8):1745-1754. https://doi.org/10.1093/emboj/19.8.1745.
  88. Souchelnytskyi S, Rönnstrand L, Heldin CH, ten Dijke P. Phosphorylation of SMAD signaling proteins by receptor serine/threonine kinases. Methods Mol Biol. 2001;124:107-120. https://doi.org/10.1385/1-59259-059-4:107.
  89. Massagué J, Blain SW, Lo RS. TGFbeta signaling in growth control, cancer, and heritable disorders. Cell. 2000;103(2):295-309. https://doi.org/10.1016/s0092-8674 (00)00121-5.
  90. Attisano L, Wrana JL. Signal transduction by the TGF-beta superfamily. Science. 2002;296(5573):1646-1647. https://doi.org/10.1126/science.1071809.
  91. Massagué J, Gomis RR. The logic of TGFbeta signaling. FEBS Lett. 2006;580(12):2811-2820. https://doi.org/ 10.1016/j.febslet.2006.04.033.
  92. Сhegini N, Luo X, Ding L, Ripley D. The expression of SMADs and transforming growth factor beta receptors in leiomyoma and myometrium and the effect of gonadotropin releasing hormone analogue therapy. Mol Cell Endocrinol. 2003;209(1-2):9-16. https://doi.org/10.1016/ j.mce.2003.08.007.
  93. Salama SA, Diaz-Arrastia CR, Kilic GS, Kamel MW. 2-Methoxyestradiol causes functional repression of transforming growth factor β3 signaling by ameliorating Smad and non-Smad signaling pathways in immortalized uterine fibroid cells. Fertil Steril. 2012;98(1):178-184. https://doi.org/10.1016/j.fertnstert.2012.04.002.



Abstract - 41

PDF (Russian) - 12

PDF (English) - 0


Article Metrics

Metrics Loading ...



Copyright (c) 2020 Yarmolinskaya M.I., Polenov N.I., Kunitsa V.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies