Serotonin receptor and serotonin transporter expressions in the placental villous tree in gestational diabetes mellitus

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: The serotonergic system during pregnancy plays an important role not only in carbohydrate metabolism, but also in the laying and regulation of the fetoplacental complex, growth and development of the fetus. The study of the expression of placental serotonin 5-HT2A receptor and serotonin transporter (SERT) in gestational diabetes mellitus is foremost for scrutinizing the pathogenesis of perinatal complications, as it may allow for finding new opportunities for their prevention and correction.

AIM: The aim of this study was to compare the expression patterns of the serotonin 5-HT2A receptor and SERT in placental tissue in gestational diabetes mellitus and in normal pregnancy.

MATERIALS AND METHODS: This comparative cohort study included pregnant women with gestational diabetes mellitus (n = 6) and patients with normal pregnancy (n = 10). The expression of serotonin 5-HT2A receptor (Abcam, USA) and SERT (Bioss Antibodies, USA) was studied in placenta samples from the both study groups by immunohistochemical method. Morphometric analysis was performed using the VideoTest-Morphology 5.2 program (Videotest Ltd., Russia).

RESULTS: The relative area of SERT expression in the placenta in gestational diabetes mellitus was higher compared to normal pregnancy (p < 0.001). The relative areas of expression of the serotonin 5-HT2A receptor in the placenta did not differ between the study groups (p = 0.5).

CONCLUSIONS: Higher SERT expression in the placentas of patients with gestational diabetes mellitus compared to those from women with normal pregnancies may reflect the level of tension of compensatory mechanisms in gestational diabetes mellitus and the effect of insulin therapy on these mechanisms.

Full Text

Restricted Access

About the authors

Ofelia A. Bettikher

V.A. Almazov National Medical Research Center; The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: ophelia.bettikher@gmail.com
ORCID iD: 0000-0002-1161-1558

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg; Saint Petersburg

Olga A. Belyaeva

V.A. Almazov National Medical Research Center

Email: belyaevaolga0138@gmail.com
ORCID iD: 0000-0002-6970-7085

MD

Russian Federation, Saint Petersburg

Albina I. Dukovich

V.A. Almazov National Medical Research Center

Email: alyadukovich@gmail.com
ORCID iD: 0000-0002-7912-035X
Russian Federation, Saint Petersburg

Olga M. Vorobeva

V.A. Almazov National Medical Research Center

Email: olgarasp@yandex.ru
ORCID iD: 0000-0002-1349-7349

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Tatiana G. Tral

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ttg.tral@yandex.ru
ORCID iD: 0000-0001-8948-4811

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Gulrukhsor Kh. Tolibova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: gulyatolibova@yandex.ru
ORCID iD: 0000-0002-6216-6220

MD, Dr. Sci. (Med)

Russian Federation, Saint Petersburg

Victor A. Bart

V.A. Almazov National Medical Research Center

Email: vbartvit@mail.ru
ORCID iD: 0000-0002-9406-4421

Cand. Sci. (Phys. & Math.)

Russian Federation, Saint Petersburg

Igor Yu. Kogan

V.A. Almazov National Medical Research Center; The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900

MD, Dr. Sci. (Med.), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Saint Petersburg; Saint Petersburg

Irina E. Zazerskaya

V.A. Almazov National Medical Research Center; The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: zazera@almazovcentre.com
ORCID iD: 0000-0003-4431-3917

MD, Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg; Saint Petersburg

References

  1. Watts SW. 5-HT in systemic hypertension: foe, friend or fantasy? Clin Sci (Lond). 2005;108(5):399–412. doi: 10.1042/CS20040364
  2. Kanova M, Kohout P. Serotonin-its synthesis and roles in the healthy and the critically ill. Int J Mol Sci. 2021;22(9):4837. doi: 10.3390/ijms22094837
  3. Deroy K, Côté F, Fournier T, et al. Serotonin production by human and mouse trophoblast: involvement in placental development and function. Placenta. 2013;34(9). doi: 10.1016/j.placenta.2013.06.214
  4. Murthi P, Vaillancourt C. Placental serotonin systems in pregnancy metabolic complications associated with maternal obesity and gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis. 2020;1866(2). doi: 10.1016/j.bbadis.2019.01.017
  5. Hadden C, Fahmi T, Cooper A, et al. Serotonin transporter protects the placental cells against apoptosis in caspase 3-independent pathway. J Cell Physiol. 2017;232(12):3520–3529. doi: 10.1002/jcp.25812
  6. Viau M, Lafond J, Vaillancourt C. Expression of placental serotonin transporter and 5-HT 2A receptor in normal and gestational diabetes mellitus pregnancies. Reprod Biomed Online. 2009;19(2):207–215. doi: 10.1016/s1472-6483(10)60074-0
  7. Blazevic S, Horvaticek M, Kesic M, et al. Epigenetic adaptation of the placental serotonin transporter gene (SLC6A4) to gestational diabetes mellitus. PLoS One. 2017;12(6). doi: 10.1371/journal.pone.0179934
  8. Li Y, Hadden C, Singh P, et al. GDM-associated insulin deficiency hinders the dissociation of SERT from ERp44 and down-regulates placental 5-HT uptake. Proc Natl Acad Sci USA. 2014;111(52):E5697–E5705. doi: 10.1073/pnas.1416675112
  9. Carrasco-Wong I, Moller A, Giachini FR, et al. Placental structure in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis. 2020;1866(2). doi: 10.1016/j.bbadis.2019.165535
  10. Tral TG, Tolibova GK, Musina EV, et al. Molecular and morphological peculiarities of chronic placental insufficiency formation caused by different types of diabetes mellitus. Diabetes mellitus. 2020;23(2):185–191. EDN: WMVKAO doi: 10.14341/DM10228
  11. Valencia-Ortega J, Saucedo R, Sánchez-Rodríguez MA, et al. Epigenetic alterations related to gestational diabetes mellitus. Int J Mol Sci. 2021;22(17). doi: 10.3390/ijms22179462
  12. Horvatiček M, Perić M, Bečeheli I, et al. Maternal metabolic state and fetal sex and genotype modulate methylation of the serotonin receptor type 2A gene (HTR2A) in the human placenta. Biomedicines. 2022;10(2):467. doi: 10.3390/biomedicines10020467
  13. Pavlova TV, Kaplin AN, Goncharov IYu, et al. Uteroplacental blood flow in maternal diabetes mellitus. Arkhiv Patologii. 2021;83(1):25–30. EDN: RTLQNV doi: 10.17116/patol20218301125
  14. Brodowski L, Rochow N, Yousuf EI, et al. The impact of parity and maternal obesity on the fetal outcomes of a non-selected Lower Saxony population. J Perinat Med. 2021;50(2):167–175. doi: 10.1515/jpm-2020-0614
  15. Anderson MS, Flowers-Ziegler J, Das UG, et al. Glucose transporter protein responses to selective hyperglycemia or hyperinsulinemia in fetal sheep. Am J Physiol Regul Integr Comp Physiol. 2001;281(5):R1545–R1552. doi: 10.1152/ajpregu.2001.281.5.R1545
  16. Bönisch H, Fink KB, Malinowska B, et al. Serotonin and beyond — a tribute to Manfred Göthert (1939–2019). Naunyn Schmiedebergs Arch Pharmacol. 2021;394(9):1829–1867. doi: 10.1007/s00210-021-02083-5
  17. Bettikher OA, Belyaeva OA, Dukovich AI, et al. Expression of the serotonergic system components in the placenta in various types of preeclampsia. Journal of Obstetrics and Women’s Diseases. 2023;72(1):5–16. EDN: BFRVOI doi: 10.17816/JOWD110890

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Histological examination: а, chronic placental insufficiency, dissociated form with dissociated form with relative anemia of the vascular bed of the villous tree; b, chronic placental insufficiency, dissociated form with severe circulatory disorders; c, terminal type of placental development, which corresponds to the gestational age. Hematoxylin and eosin staining, zoom ×200

Download (621KB)
3. Fig. 2. Joint scatterplots of “relative area of expression” and “optical density of expression” separately for 5-HT2A and SERT

Download (297KB)
4. Group of patients with gestational diabetes mellitus

Download (82KB)
5. Group of patients with gestational diabetes mellitus

Download (81KB)
6. Control group

Download (74KB)
7. Control group

Download (99KB)

Copyright (c) 2024 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies