Inflammaging and prognostic markers of endometriosis

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Inflammaging, an age-associated inflammation, is a cellular stress response caused by DNA damage, activation of oncogenes or inactivation of tumor suppressors, oxidative stress, chemotherapy, mitochondrial dysfunction, or epigenetic changes. Damage to macromolecules leads to the cessation of proliferation due to the activation of pathways such as p53/p21CIP1 and p16INK4a/RB. These form the senescence-associated secretory phenotype (SASP), the molecular/cellular manifestations of which in endometrial cells have features similar to those observed in endometriosis. Presently, there are no uniform diagnostic criteria or established molecular markers that can predict the development and course of endometriosis. In this regard, it is relevant to develop new minimally invasive examination methods, statistically based criteria and molecular markers for early diagnosis and prognosis of endometriosis.

This review article is devoted to identifying molecular markers that characterize the pathogenesis of endometriosis during inflaming. The aim of the study was to consider modern ideas about the mechanisms of inflaming and its role in the development of endometriosis to determine possible molecular markers for predicting the course of the pathology. We used the PubMed, Scopus and Google Scholar databases to analyze and systematize the literature over the past ten years. Our review reflects the main molecular mechanisms and prognostic criteria that characterize the development of endometriosis during inflaming.

Full Text

Restricted Access

About the authors

Anastasia A. Shteiman

Saint Petersburg Institute of Bioregulation and Gerontology

Email: molpathol@bk.ru
ORCID iD: 0000-0002-4209-7133
SPIN-code: 4243-3599

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg

Yulia S. Krylova

Academician I.P. Pavlov First Saint Petersburg State Medical University; Saint Petersburg Institute of Phthisiopulmonology

Email: emerald2008@mail.ru
ORCID iD: 0000-0002-8698-7904
SPIN-code: 9729-7872

MD, Cand. Sci. (Med.)

Russian Federation, Saint Petersburg; Saint Petersburg

Mikhail A. Dokhov

Saint Petersburg Institute of Phthisiopulmonology; Saint Petersburg State Pediatric Medical University

Author for correspondence.
Email: mad20@mail.ru
ORCID iD: 0000-0002-7834-5522
SPIN-code: 5849-5932

MD, Cand. Sci. (Med.)

Russian Federation, 2-4 Ligovsky Ave., Saint Petersburg, 191036; Saint Petersburg

Tatyana S. Zubareva

Saint Petersburg Institute of Bioregulation and Gerontology; Saint Petersburg Institute of Phthisiopulmonology

Email: molpathol@bk.ru
ORCID iD: 0000-0001-9518-2916
SPIN-code: 2725-6105

Cand. Sci. (Biol.)

Russian Federation, Saint Petersburg; 2-4 Ligovsky Ave., Saint Petersburg, 191036

References

  1. Secomandi L, Borghesan M, Velarde M, et al. The role of cellular senescence in female reproductive aging and the potential for senotherapeutic interventions. Hum Reprod Update. 2022;28(2):172–189. doi: 10.1093/humupd/dmab038
  2. Lean SC, Derricott H, Jones RL, et al. Advanced maternal age and adverse pregnancy outcomes: a systematic review and meta-analysis. PLoS One. 2017;12(10). doi: 10.1371/journal.pone.0186287
  3. Frederiksen LE, Ernst A, Brix N., et al. Risk of adverse pregnancy outcomes at advanced maternal age. Obstet Gynecol. 2018;131(3):457–463. doi: 10.1097/AOG.0000000000002504
  4. Pasquariello R, Ermisch AF, Silva E., et al. Alterations in oocyte mitochondrial number and function are related to spindle defects and occur with maternal aging in mice and humans. Biol Reprod. 2019;100(4):971–981. doi: 10.1093/biolre/ioy248
  5. Sultana Z, Maiti K, Dedman L, et al. Is there a role for placental senescence in the genesis of obstetric complications and fetal growth restriction? Am J Obstet Gynecol. 2018;218(2S):S762–S773. doi: 10.1016/j.ajog.2017.11.567
  6. Woods L, Perez-Garcia V, Kieckbusch J., et. al. Decidualisation and placentation defects are a major cause of age-related reproductive decline. Nat Commun. 2017;8(1):352. doi: 10.1038/s41467-017-00308-x
  7. Daan NM, Fauser BC. Menopause prediction and potential implications. Maturitas. 2015;82(3):257–265. doi: 10.1016/j.maturitas.2015.07.019
  8. Chow ET, Mahalingaiah S. Cosmetics use and age at menopause: is there a connection? Fertil Steril. 2016;106(4):978–990. doi: 10.1016/j.fertnstert.2016.08.020
  9. Moslehi N, Mirmiran P, Tehrani FR, et al. Current evidence on associations of nutritional factors with ovarian reserve and timing of menopause: a systematic review. Adv Nutr. 2017;8(4):597–612. doi: 10.3945/an.116.014647
  10. Birch J, Gil J. Senescence and the SASP: many therapeutic avenues. Genes Dev. 2020;34(23–24):1565–1576. doi: 10.1101/gad.343129.120
  11. Gorgoulis V, Adams PD, Alimonti A., et. al. Cellular senescence: defining a path forward. Cell. 2019;179(4):813–827. doi: 10.1016/j.cell.2019.10.005
  12. McHugh D, Gil J. Senescence and aging: causes, consequences, and therapeutic avenues. J Cell Biol. 2018;217(1):65–77. doi: 10.1083/jcb.201708092.
  13. Hoare M, Ito Y, Kang TW. Et NOTCH1 mediates a switch between two distinct secretomes during senescence. Nat Cell Biol. 2016;18(9):979–992. doi: 10.1038/ncb3397
  14. Chuprin A, Gal H, Biron-Shental T, et al. Cell fusion induced by ERVWE1 or measles virus causes cellular senescence. Genes Dev. 2013;27(21):2356–2366. doi: 10.1101/gad.227512.113.
  15. Biran A, Zada L, Abou Karam P, et al. Quantitative identification of senescent cells in aging and disease. Aging Cell. 2017;16(4):661–671. doi: 10.1111/acel.12592
  16. Takasugi M, Okada R, Takahashi A, et al. Small extracellular vesicles secreted from senescent cells promote cancer cell proliferation through EphA2. Nat Commun. 2017;8:15729. doi: 10.1038/ncomms15728
  17. Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci. 2014;69(Suppl 1):S4–9. doi: 10.1093/gerona/glu057
  18. Vilas Boas L, Bezerra Sobrinho C, Rahal D, et al. Antinuclear antibodies in patients with endometriosis: a cross-sectional study in 94 patients. Hum Immunol. 2022;83(1):70–73. doi: 10.1016/j.humimm.2021.10.001
  19. Becker CM, Bokor A, Heikinheimo O, et al. ESHRE Endometriosis Guideline Group. ESHRE guideline: endometriosis. Hum Reprod Open. 2022;2022(2):1–26. doi: 10.1093/hropen/ hoac009
  20. Pomatto LCD, Davies KJA. Adaptive homeostasis and the free radical theory of ageing. Free Radic Biol Med. 2018;124:420–430. doi: 10.1016/j.freeradbiomed.2018.06.016
  21. Scutiero G, Iannone P, Bernardi G, et al. Oxidative stress and endometriosis: a systematic review of the literature. Oxid Med Cell Longev. 2017;2017. doi: 10.1155/2017/7265238
  22. Van Langendonckt A, Casanas-Roux F, Donnez J. Oxidative stress and peritoneal endometriosis. Fertil Steril. 2002;77(5):861–870. doi: 10.1016/s0015-0282(02)02959-x
  23. Pertynska-Marczewska M, Diamanti-Kandarakis E. Aging ovary and the role for advanced glycation end products. Menopause. 2017;24(3):345–351. doi: 10.1097/GME.0000000000000755
  24. Merhi Z, Du XQ, Charron MJ. Postnatal weaning to different diets leads to different reproductive phenotypes in female offspring following perinatal exposure to high levels of dietary advanced glycation end products. F S Sci. 2022;3(1):95–105. doi: 10.1016/j.xfss.2021.12.001
  25. Young JM, McNeilly AS. Theca: the forgotten cell of the ovarian follicle. Reproduction. 2010;140(4):489–504. doi: 10.1530/REP-10-0094
  26. Laven JSE. Early menopause results from instead of causes premature general ageing. Reprod Biomed Online. 2022;45(3):421–424. doi: 10.1016/j.rbmo.2022.02.027
  27. Laven JSE. Genetics of menopause and primary ovarian insufficiency: time for a paradigm shift? Semin Reprod Med. 2020;38(4):256–262. doi: 10.1055/s-0040-1721796
  28. Ruth KS, Day FR, Hussain J, et al. Genetic insights into biological mechanisms governing human ovarian ageing. Nature. 2021; 596(7872):393–397. doi: 10.1038/s41586-021-03779-7
  29. Chico-Sordo L, Córdova-Oriz I, Polonio AM, et al. Reproductive aging and telomeres: are women and men equally affected? Mech Ageing Dev. 2021;198:111541. doi: 10.1016/j.mad.2021.111541
  30. Fernandes SG, Dsouza R, Khattar E. External environmental agents influence telomere length and telomerase activity by modulating internal cellular processes: implications in human aging. Environ Toxicol Pharmacol. 2021;85:103633. doi: 10.1016/j.etap.2021.103633
  31. Keefe DL. Telomeres and genomic instability during early development. Eur J Med Genet. 2020;63(2):103638. doi: 10.1016/j.ejmg.2019.03.002
  32. Kosebent EG, Uysal F, Ozturk S. The altered expression of telomerase components and telomere-linked proteins may associate with ovarian aging in mouse. Exp Gerontol. 2020;138:110975. doi: 10.1016/j.exger.2020.110975
  33. Sofiyeva N, Ekizoglu S, Gezer A, et al. Oral E. Does telomerase activity have an effect on infertility in patients with endometriosis? Eur J Obstet Gynecol Reprod Biol. 2017; 213:116–122. doi: 10.1016/j.ejogrb.2017.04.027
  34. Milewski Ł, Ścieżyńska A, Ponińska J, et al. Endometriosis is associated with functional polymorphism in the promoter of heme oxygenase 1 (HMOX1) gene. Cells. 2021;10(3):695. doi: 10.3390/cells10030695
  35. Agarwal SK, Chapron C, Giudice LC, et al. Clinical diagnosis of endometriosis: a call to action. Am J Obstet Gynecol. 2019;220(4):354.e1–354.e12. doi: 10.1016/j.ajog.2018.12.039
  36. Orazov MR, Radzinsky VE, Orekhov RE, et al. Endometriosis-associated infertility: pathogenesis and possibilities of hormone therapy in preparation for IVF. Gynecology, Obstetrics and Perinatology. 2022;21(2):90–98. EDN: BAVAIK doi: 10.20953/1726-1678-2022-2-90-98
  37. Anastasiu CV, Moga MA, Neculau EA, et al. Biomarkers for the noninvasive diagnosis of endometriosis: state of the artand future perspectives. Int J Mol Sci. 2020;21(5):1750. doi: 10.3390/ijms21051750
  38. Adamczyk M, Wender-Ozegowska E, Kedzia M. Epigenetic factors in eutopic endometrium in women with endometriosis and infertility. Int J Mol Sci. 2022;23(7):3804. doi: 10.3390/ijms23073804
  39. Laganà AS, Garzon S, Götte M, et al. The pathogenesis of endometriosis: molecular and cell biology insights. Int J Mol Sci. 2019;20(22):5615. doi: 10.3390/IJMS20225615
  40. Szukiewicz D, Stangret A, Ruiz-Ruiz C, et al. Estrogen- and progesterone (P4)-mediated epigenetic modifications of endometrial stromal cells (EnSCs) and/or mesenchymal stem/stromal cells (MSCs) in the etiopathogenesis of endometriosis. Stem Cell Rev Reports. 2021;17(4):1174–1193. doi: 10.1007/s12015-020-10115-5
  41. Amalinei C, Păvăleanu I, Lozneanu L, et al. Endometriosis — insights into a multifaceted entity. Folia Histochem Cytobiol. 2018;1(2):61–82. doi: 10.5603/FHC.a2018.0013
  42. Han SJ, Lee JE, Cho YJ, et al. Genomic function of estrogen receptor β in endometriosis. Endocrinology. 2019;160(11):2495–2516. doi: 10.1210/en.2019-00442
  43. McKinnon B, Mueller M, Montgomery G. progesterone resistance in endometriosis:an acquired property? Trends Endocrinol Metab. 2018;29(8):535–548. doi: 10.1016/j.tem.2018.05.006
  44. Perdaens O, van Pesch V. Molecular mechanisms of immunosenescene and inflammaging: relevance to the immunopathogenesis and treatment of multiple sclerosis. Front Neurol. 2021;12. doi: 10.3389/fneur.2021.811518
  45. Thomas V, Uppoor AS, Pralhad S, et al. Towards a common etiopathogenesis: periodontal disease and endometriosis. J Hum Reprod Sci. 2018;11:269–273. doi: 10.4103/jhrs.JHRS_8_18
  46. Fukui A, Mai C, Saeki S, et al. Pelvic endometriosis and natural killer cell immunity. Am J Reprod Immunol. 2021;85(4). doi: 10.1111/aji.13342
  47. Lagoumtzi SM, Chondrogianni N. Senolytics and senomorphics: natural and synthetic therapeutics in the treatment of aging and chronic diseases. Free Radic Biol Med. 2021;171:169–190. doi: 10.1016/j.freeradbiomed.2021.05.003
  48. Smolarz B, Szyłło K, Romanowicz H. Endometriosis: epidemiology, classification, pathogenesis, treatment and genetics (review of literature). Int J Mol Sci. 2021;22(19):10554. doi: 10.3390/ijms221910554317

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies