Evaluation of renal function in patients with type 1 diabetes mellitus implementing reproductive function in assisted reproductive technology protocols

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The prevalence of type 1 diabetes mellitus has increased significantly among women of reproductive age over the past two decades. Despite improved glycemic control and intensified insulin therapy, patients with diabetes still suffer from many reproductive problems, which often makes this group of patients potential participants in assisted reproductive technology programs under certain conditions. Diabetic nephropathy is one of the most serious complications of type 1 diabetes mellitus. It ranks first in the structure of chronic kidney disease and is a common cause of end-stage renal failure, disability, and mortality. Early diagnosis and identification of specific markers of diabetic nephropathy will allow for timely initiation of nephroprotective therapy to slow the progression of diabetic kidney damage.

This review article is based on the results of the PubMed, Frontiers, and ResearchGate search queries from 2016 to 2023. We analyzed worldwide and domestic data on the impact of type 1 diabetes mellitus on kidney function, the influence of sex hormones on diabetic nephropathy, and the importance of the personalized approach to this group of patients at the pre-pregnancy stage, especially those planning treatment within assisted reproductive technology programs.

Full Text

Restricted Access

About the authors

Tatiana V. Veretekhina

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: tatianaveretekhina@mail.ru

MD

Russian Federation, Saint Petersburg

Maria I. Yarmolinskaya

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; North-Western State Medical University named after I.I. Mechnikov

Email: m.yarmolinskaya@gmail.com
ORCID iD: 0000-0002-6551-4147

MD, Dr. Sci. (Med.), Professor, Professor of the Russian Academy of Sciences

Saint Petersburg; Saint Petersburg

References

  1. Dedov II, Shestakova MV, Mayorov AYu, editors. Standards of specialized diabetes care. 11th edn. Moscow; 2023. (In Russ.) doi: 10.14341/DM13042
  2. IDF Diabetes. Atlas. 10th edn. Brussels: International Diabetes Federation; 2021. Available from: https://www.ncbi.nlm.nih.gov/books/NBK581934/
  3. Federal register of patients with diabetes mellitus. (In Russ.) Available from: https://sd.diaregistry.ru/content/epidemiologiya.html
  4. Shestakova MV. Diabetes mellitus and chronic kidney disease: Possibilities of prediction, early diagnosis, and nephroprotection in the 21st century. Terapevticheskii arkhiv. 2016;88(6):84–88. EDN: WAIPBX doi: 10.17116/terarkh201688684-88
  5. Xie Y, Bowe B, Mokdad AH, et al. Analysis of the Global Burden of Disease study highlights the global, regional, and national trends of chronic kidney disease epidemiology from 1990 to 2016. Kidney Int. 2018;94(3):567–581. doi: 10.1016/j.kint.2018.04.011
  6. Foreman KJ, Marquez N, Dolgert A, et al. Forecasting life expectancy, years of life lost, and all-cause and cause-specific mortality for 250 causes of death: reference and alternative scenarios for 2016-40 for 195 countries and territories. Lancet. 2018;392(10159):2052–2090. doi: 10.1016/S0140-6736(18)31694-5
  7. Shamkhalova MS, Vikulova OK, Zheleznyakova AV, et al. Trends in the epidemiology of chronic kidney disease in Russian Federation according to the Federal Diabetes Register (2013–2016). Diabetes mellitus. 2018;21(3):160–169. EDN: XYEBFB doi: 10.14341/DM9687
  8. Hovind P, Tarnow L, Rossing P, et al. Predictors for the development of microalbuminuria and macroalbuminuria in patients with type 1 diabetes: inception cohort study. BMJ. 2004;328(7448):1105. doi: 10.1136/bmj.38070.450891.FE
  9. Herman-Edelstein M, Doi SQ. Pathophysiology of diabetic nephropathy. In: Blaine J. editors. Proteinuria: basic mechanisms, pathophysiology and clinical relevance. Cham(Switzerland): Springer; 2016. P. 41–65.
  10. Li JH, Wang W, Huang XR, et al. Advanced glycation end products induce tubular epithelial-myofibroblast transition through the RAGE-ERK1/2 MAP kinase signaling pathway. Am J Pathol. 2004;164(4):1389–1397. doi: 10.1016/S0002-9440(10)63225-7
  11. Tan AL, Forbes JM, Cooper ME. AGE, RAGE, and ROS in diabetic nephropathy. Semin Nephrol. 2007;27(2):130–143. doi: 10.1016/j.semnephrol.2007.01.006
  12. Navarro-González JF, Mora-Fernández C, Muros de Fuentes M, et al. Inflammatory molecules and pathways in the pathogenesis of diabetic nephropathy. Nat Rev Nephrol. 2011;7(6):327–340. doi: 10.1038/nrneph.2011.51
  13. Xu Y, Nie L, Yin YG, et al. Resveratrol protects against hyperglycemia-induced oxidative damage to mitochondria by activating SIRT1 in rat mesangial cells. Toxicol Appl Pharmacol. 2012;259(3):395–401. doi: 10.1016/j.taap.2011.09.028
  14. Ruiz-Ortega M, Rayego-Mateos S, Lamas S, et al. Targeting the progression of chronic kidney disease. Nat Rev Nephrol. 2020;16(5):269–288. doi: 10.1038/s41581-019-0248-y
  15. Smith MJ, Simmons KM, Cambier JC. B cells in type 1 diabetes mellitus and diabetic kidney disease. Nat Rev Nephrol. 2017;13(11):712–720. doi: 10.1038/nrneph.2017.138
  16. A/L B Vasanth Rao VR, Tan SH, Candasamy M, et al. Diabetic nephropathy: an update on pathogenesis and drug development. Diabetes Metab Syndr. 2019;13(1):754–762. doi: 10.1016/j.dsx.2018.11.054
  17. Liu Y, Su YY, Yang Q, et al. Stem cells in the treatment of renal fibrosis: a review of preclinical and clinical studies of renal fibrosis pathogenesis. Stem Cell Res Ther. 2021;12(1):333. doi: 10.1186/s13287-021-02391-w
  18. Sugahara M, Pak WLW, Tanaka T, et al. Update on diagnosis, pathophysiology, and management of diabetic kidney disease. Nephrology. 2021;26(6):491–500. doi: 10.1111/nep.13860
  19. Tuttle KR. Back to the future: glomerular hyperfiltration and the diabetic kidney. Diabetes. 2017;66(1):14–16. doi: 10.2337/dbi16-0056
  20. Rabbani N, Thornalley PJ. Advanced glycation end products in the pathogenesis of chronic kidney disease. Kidney Int. 2018;93(4):803–813. doi: 10.1016/j.kint.2017.11.034
  21. Opazo-Ríos L, Mas S, Marín-Royo G, et al. Lipotoxicity and diabetic nephropathy: novel mechanistic insights and therapeutic opportunities. Int J Mol Sci. 2020;21(7). doi: 10.3390/ijms21072632
  22. Russian Association of Endocrinologists. Type 1 diabetes mellitus in adults. Clinical recommendations. 2022. (In Russ.) Available from: https://cr.minzdrav.gov.ru/schema/286_2
  23. Zuraeva ZT. Predicting the risk of diabetic nephropathy in patients with type 1 diabetes mellitus and assessing the nephroprotective effects of incretin therapy [dissertation]. Moscow; 2019. Available from: https://www.dissercat.com/content/prognozirovanie-riska-diabeticheskoi-nefropatii-u-bolnykh-sakharnym-diabetom-1-tipa-i-otsenk (In Russ.) EDN: NNPMAZ
  24. Khan NU, Lin J, Liu X, et al. Insights into predicting diabetic nephropathy using urinary biomarkers. Biochim Biophys Acta Proteins Proteom. 2020;1868(10). doi: 10.1016/j.bbapap.2020.140475
  25. Satirapoj B. Tubulointerstitial Biomarkers for diabetic nephropathy. J Diabetes Res. 2018;2018. doi: 10.1155/2018/2852398
  26. Borovik NB, Yarmolinskaya MI, Gkavnova OB, et al. Prospects of using cystatin C as an early predictor of diabetic nephropathy. Journal of Obstetrics and Women’s Diseases. 2019;68(3):15–24. EDN: VKTXBM doi: 10.17816/JOWD68315-24
  27. Stevens LA, Schmid CH, Greene T, et al. Factors other than glomerular filtration rate affect serum cystatin C levels. Kidney Int. 2009;75(6):652–660. doi: 10.1038/ki.2008.638
  28. Liu X, Foster MC, Tighiouart H, et al. Non-GFR Determinants of low-molecular-weight serum protein filtration markers in CKD. Am J Kidney Dis. 2016;68(6):892–900. doi: 10.1053/j.ajkd.2016.07.021
  29. Al Musaimi O, Abu-Nawwas AH, Al Shaer D, et al. Influence of age, gender, smoking, diabetes, thyroid and cardiac dysfunctions on cystatin C biomarker. Semergen. 2019;45(1):44–51. doi: 10.1016/j.semerg.2018.07.005
  30. Sazonova EG, Mokhort TV. Thyroid functioning in diabetes mellitus complicated with chronic renal disease. International journal of endocrinology. 2013;(2):62–67. EDN: QBCRIF
  31. Oberbauer R, Nenov V, Weidekamm C, et al. Reduction in mean glomerular pore size coincides with the development of large shunt pores in patients with diabetic nephropathy. Exp Nephrol. 2001;9(1):49–53. doi: 10.1159/000020698
  32. Pucci L, Triscornia S, Lucchesi D, et al. Cystatin C and estimates of renal function: searching for a better measure of kidney function in diabetic patients. Clin Chem. 2007;53(3):480–488. doi: 10.1373/clinchem.2006.076042
  33. Feng B, Lu Y, Ye L, et al. Mendelian randomization study supports the causal association between serum cystatin C and risk of diabetic nephropathy. Front Endocrinol. 2022;13. doi: 10.3389/fendo.2022.1043174
  34. Liu J, Liu Z, Sun W, et al. Role of sex hormones in diabetic nephropathy. Front Endocrinol. 2023;14. doi: 10.3389/fendo.2023.1135530
  35. Kitajima Y, Ono Y. Estrogens maintain skeletal muscle and satellite cell functions. J Endocrinol. 2016;229(3):267–275. doi: 10.1530/JOE-15-0476
  36. Arnal JF, Lenfant F, Metivier R, et al. Membrane and nuclear estrogen receptor alpha actions: from tissue specificity to medical implications. Physiol Rev. 2017;97(3):1045–1087. doi: 10.1152/physrev.00024.2016
  37. Wilkinson HN, Hardman MJ. The role of estrogen in cutaneous ageing and repair. Maturitas. 2017;103:60–64. doi: 10.1016/j.maturitas.2017.06.026
  38. Trenti A, Tedesco S, Boscaro C, et al. Estrogen, angiogenesis, immunity and cell metabolism: solving the puzzle. Int J Mol Sci. 2018;19(3):859. doi: 10.3390/ijms19030859
  39. El-Gendy AA, Elsaed WM, Abdallah HI. Potential role of estradiol in ovariectomy-induced derangement of renal endocrine functions. Ren Fail. 2019;41(1):507–520. doi: 10.1080/0886022X.2019.1625787
  40. Vrtačnik P, Ostanek B, Mencej-Bedrač S, et al. The many faces of estrogen signaling. Biochem Med (Zagreb). 2014;24(3):329–342. doi: 10.11613/BM.2014.035
  41. Hara Y, Waters EM, McEwen BS, et al. Estrogen effects on cognitive and synaptic health over the lifecourse. Physiol Rev. 2015;95(3):785–807. doi: 10.1152/physrev.00036.2014
  42. Arao Y, Korach KS. The physiological role of estrogen receptor functional domains. Essays Biochem. 2021;65(6):867–875. doi: 10.1042/EBC20200167
  43. Ji H, Zheng W, Menini S, et al. Female protection in progressive renal disease is associated with estradiol attenuation of superoxide production. Gend Med. 2007;4(1):56–71. doi: 10.1016/s1550-8579(07)80009-x
  44. Andreeva EN, Grigoryan OR. Endocrine gynecology: selected seminars. Dedov II, Mokrysheva NG, editors. Moscow: MEDpress-inform; 2023. (In Russ.)
  45. Tolpygina MG. Ovulatory function of the ovaries in women with type 1 diabetes mellitus depending on compensation of carbohydrate metabolism [dissertation]. Saint Petersburg; 2019. Available from: https://ott.ru/files/news/pg/2019_tolpigina/dissertatsiia_tolpigina.pdf (In Russ.)
  46. Whitworth KW, Baird DD, Stene LC, et al. Fecundability among women with type 1 and type 2 diabetes in the Norwegian Mother and Child Cohort Study. Diabetologia. 2011;54(3):516–522. doi: 10.1007/s00125-010-2003-6
  47. All-Russian public organization RAHR. National register of ART. Report for 2021. Saint Petersburg; 2023. Available from: https://www.rahr.ru/d_registr_otchet/RegistrVRT_2021.pdf (In Russ.)
  48. Smeenk J, Wyns C, De Geyter Ch, et al. Assisted Reproductive Technology (ART) in Europe 2020 and development of a strategy of vigilance: Preliminary results generated from European registers by the ESHRE EIM Consortium. Hum Reprod. 2023;38(suppl 1). doi: 10.1093/humrep/dead093.186
  49. Adamson GD, Dyer S, Zegers-Hochschild F, et al. ICMART preliminary world report 2019. Hum Reprod. 2023;38(suppl 1). doi: 10.1093/humrep/dead093.187
  50. Larsen MD, Jensen DM, Fedder J, et al. Live-born children after assisted reproduction in women with type 1 diabetes and type 2 diabetes: a nationwide cohort study. Diabetologia. 2020;63(9):1736–1744. doi: 10.1007/s00125-020-05193-6
  51. Misharina EV, Yarmolinskaya MI, Borovik NV. Algorithms of preparation for art programs in patients with type 1 diabetes mellitus. Obstetrics and Gynegology. 2022;9(suppl):50–56.
  52. Relph S, Patel T, Delaney L, et al. Adverse pregnancy outcomes in women with diabetes-related microvascular disease and risks of disease progression in pregnancy: a systematic review and meta-analysis. PLoS Med. 2021;18(11). doi: 10.1371/journal.pmed.1003856
  53. Bogdanova MA, Vartanova IV, Gzgzyan AM, et al. In vitro fertilization: a practical guide for doctors. Kogan IYu, editor. Moscow: GEOTAR-Media; 2021. (In Russ.)
  54. Grigoryan OR, Andreeva EN. Ispol’zovanie mikronizirovannogo natural’nogo progesterona v terapii narusheniy menstrual’nogo tsikla u devushek s sakharnym diabetom 1 tipa v sochetanii s gipertriglitseridemiey. Diabetes mellitus. 2008;11(2):51–54. EDN: KXEGZL doi: 10.14341/2072-0351-5760
  55. Misharina EV, Tiselko AV, Yarmolinskaya MI, et al. In vitro fertilization as a method of infertility treatment in women with type 1 diabetes mellitus. Diabetes mellitus. 2018;21(5):425–430. EDN: YPVIOT doi: 10.14341/DM9573
  56. Shilova ES, Borovik NV, Yarmolinskaya MI. Diabetic nephropathy in type 1 diabetes and pregnancy. Modern view of the problem. Diabetes mellitus. 2020;23(4):340–348. EDN: ITLLHE doi: 10.14341/DM12228
  57. Dedov II, Shestakova MV, Mayorov AYu, et al. “Standards of specialized diabetes care” edited by Dedov I.I., Shestakova M.V., Mayorov A.Yu. 10th edition. Diabetes mellitus. 2021;24(1S):1–148. doi: 10.14341/DM12802
  58. National Collaborating Centre for Women’s and Children’s Health (UK). Diabetes in Pregnancy: Management of Diabetes and Its Complications from Preconception to the Postnatal Period. NICE guideline. London: National Institute for Health and Care Excellence (UK); 2015. Available from: https://diabetesneeds.co.uk/wp-content/uploads/2024/01/NICE-DIP-guideline-2.pdf
  59. Piccoli GB, Zakharova E, Attini R, et al. Pregnancy in chronic kidney disease: need for higher awareness. a pragmatic review focused on what could be improved in the different CKD stages and phases. J Clin Med. 2018;7(11):415. doi: 10.3390/jcm7110415
  60. Piccoli GB, Clari R, Ghiotto S, et al. Type 1 diabetes, diabetic nephropathy, and pregnancy: a systematic review and meta-study. Rev Diabet Stud. 2013;10(1):6–26. doi: 10.1900/RDS.2013.10.6
  61. Piccoli GB, Minelli F, Versino E, et al. Pregnancy in dialysis patients in the new millennium: a systematic review and meta-regression analysis correlating dialysis schedules and pregnancy outcomes. Nephrol Dial Transplant. 2016;31(11):1915–1934. doi: 10.1093/ndt/gfv395
  62. Webster P, Lightstone L, McKay DB, et al. Pregnancy in chronic kidney disease and kidney transplantation. Kidney Int. 2017;91(5):1047–1056. doi: 10.1016/j.kint.2016.10.045

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies