Prospects for using a proteomic approach to evaluate the effectiveness of implantation of embryos transferred in an IVF cycle
- 作者: Zementova M.S.1, Selkov S.A.1, Dmitry D.I.1
-
隶属关系:
- The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
- 期: 卷 73, 编号 6 (2024)
- 页面: 206-221
- 栏目: Reviews
- ##submission.dateSubmitted##: 07.05.2024
- ##submission.dateAccepted##: 03.10.2024
- ##submission.datePublished##: 06.12.2024
- URL: https://journals.eco-vector.com/jowd/article/view/631530
- DOI: https://doi.org/10.17816/JOWD631530
- ID: 631530
如何引用文章
详细
This review presents non-invasive ways to evaluate the implantation potential of embryos that have entered the IVF cycle. A morphological approach to assessing the quality of embryos used in clinical practice is described. In addition, non-invasive approaches such as cell-free DNA analysis in culture medium, assessment of morphokinetic changes of individual embryos using artificial intelligence models, analysis of oxygen consumption by individual embryos, and the proteomic approach are considered in the literature as additions to the existing embryo quality assessment system. The focus of this article is on the identification of protein molecules in spent culture media of cleavage embryos as the most promising and poorly studied approach. The diagnostic significance of human chorionic gonadotropin and its isoforms, tumor necrosis factor alpha, interleukin-6, -8, -1β, human leukocyte antigens-G, stem cell factor, interferon-α, chemokines (CCL15, CCL27, CXCL12), platelet endothelial cell adhesion molecule 1, tissue inhibitors of metalloproteinase 4, E-selectin, von Willebrand factor and other compounds as biomarkers of embryo implantation potential is described. The analysis of these proteins in the spent culture media of embryos can complement the morphological assessment of embryo quality when making decisions on choosing an embryo for transfer.
全文:

作者简介
Maria Zementova
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
编辑信件的主要联系方式.
Email: marizementova@mail.ru
ORCID iD: 0000-0001-5161-369X
俄罗斯联邦, Saint Petersburg
Sergey Selkov
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: selkovsa@mail.ru
ORCID iD: 0000-0003-1560-7529
SPIN 代码: 7665-0594
MD, Dr. Sci. (Medicine), Professor, Honored Scientist of the Russian Federation
俄罗斯联邦, Saint PetersburgDmitry Dmitry
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: falcojugger@yandex.ru
ORCID iD: 0000-0002-5749-2531
SPIN 代码: 3746-0000
Dr. Sci. (Biology)
俄罗斯联邦, Saint Petersburg参考
- Ashary N, Tiwari A, Modi D. Embryo implantation: war in times of love. Endocrinology. 2018;159(2):1188–1198. doi: 10.1210/en.2017-03082
- Lee I, Ahn SH, Kim HI, et al. Cytokines in culture media of preimplantation embryos during in vitro fertilization: Impact on embryo quality. Cytokine. 2021;148:155714. doi: 10.1016/j.cyto.2021.155714
- Dolzhikov AA, Zabolotnaya SV. Applied morphology for students and doctors: morphology of the human placenta. Study guide. Belgorod; 2005. (in Russ.)
- Sheridan MA, Fernando RC, Gardner L, et al. Establishment and differentiation of long-term trophoblast organoid cultures from the human placenta. Nat Protoc. 2020;15(10):3441–3463. doi: 10.1038/s41596-020-0381-x
- Abbas Y, Turco MY, Burton GJ, et al. Investigation of human trophoblast invasion in vitro. Hum Reprod Update. 2020;26(4):501–513. doi: 10.1093/humupd/dmaa017
- Ailamazian EK, Stepanova OI, Selkov SA, et al. Cells of immune system of mother and trophoblast cells: constructive cooperation for the sake of achievement of the joint purpose. Annals of the Russian academy of medical sciences. 2013;68(11):12–21. EDN: ROBKBV doi: 10.15690/vramn.v68i11.837
- Hernández-Vargas P, Muñoz M, et al. Identifying biomarkers for predicting successful embryo implantation: applying single to multi-OMICs to improve reproductive outcomes. Hum Reprod Update. 2020;26(2):264–301. doi: 10.1093/humupd/dmz042
- Ojosnegros S, Seriola A, Godeau AL, et al. Embryo implantation in the laboratory: an update on current techniques. Hum Reprod Update. 2021;27(3):501–530. doi: 10.1093/humupd/dmaa054
- Aplin JD, Ruane PT. Embryo-epithelium interactions during implantation at a glance. J Cell Sci. 2017;130(1):15–22. doi: 10.1242/jcs.175943
- Anagnostopoulou C, Maldonado Rosas I, Singh N, et al. Oocyte quality and embryo selection strategies: a review for the embryologists, by the embryologists. Panminerva Med. 2022;64(2):171–184. doi: 10.23736/s0031-0808.22.04680-8
- Baxter Bendus AE, Mayer JF, Shipley SK, et al. Interobserver and intraobserver variation in day 3 embryo grading. Fertil Steril. 2006;86(6):1608–1615. doi: 10.1016/j.fertnstert.2006.05.037
- Nagy ZP, Liu J, Joris H, et al. The influence of the site of sperm deposition and mode of oolemma breakage at intracytoplasmic sperm injection on fertilization and embryo development rates. Hum Reprod. 1995;10(12):3171–3177. doi: 10.1093/oxfordjournals.humrep.a135881
- Tao J, Tamis R, Fink K, et al. The neglected morula/compact stage embryo transfer. Hum Reprod. 2002;17(6):1513–1518. doi: 10.1093/humrep/17.6.1513
- Gardner DK, Schoolcraft WB. Culture and transfer of human blastocysts. Curr Opin Obstet Gynecol. 1999;11(3):307–311. doi: 10.1097/00001703-199906000-00013
- Nazem TG, Sekhon L, Lee JA, et al. The correlation between morphology and implantation of euploid human blastocysts. Reprod Biomed Online. 2019;38(2):169–176. doi: 10.1016/j.rbmo.2018.10.007
- Juneau C, Franasiak J, Treff N. Challenges facing contemporary preimplantation genetic screening. Curr Opin Obstet Gynecol. 2016;28(3):151–157. doi: 10.1097/gco.0000000000000270
- Orvieto R, Aizer A, Gleicher N. Is there still a rationale for non-invasive PGT-A by analysis of cell-free DNA released by human embryos into culture medium? Hum Reprod. 2021;36(5):1186–1190. doi: 10.1093/humrep/deab042
- Munné S, Kaplan B, Frattarelli JL, et al. Preimplantation genetic testing for aneuploidy versus morphology as selection criteria for single frozen-thawed embryo transfer in good-prognosis patients: a multicenter randomized clinical trial. Fertil Steril. 2019;112(6):1071–1079.e7. doi: 10.1016/j.fertnstert.2019.07.1346
- Rubio C, Navarro-Sánchez L, García-Pascual CM, et al. Multicenter prospective study of concordance between embryonic cell-free DNA and trophectoderm biopsies from 1301 human blastocysts. Am J Obstet Gynecol. 2020;223(5):751.e1–751.e13. doi: 10.1016/j.ajog.2020.04.035
- Jain T, Grainger DA, Ball GD, et al. 30 years of data: impact of the United States in vitro fertilization data registry on advancing fertility care. Fertil Steril. 2019;111(3):477–488. doi: 10.1016/j.fertnstert.2018.11.015
- Huang L, Bogale B, Tang Y, et al. Noninvasive preimplantation genetic testing for aneuploidy in spent medium may be more reliable than trophectoderm biopsy. Proc Natl Acad Sci USA. 2019;116(28):14105–14112. doi: 10.1073/pnas.1907472116
- Leaver M, Wells D. Non-invasive preimplantation genetic testing (niPGT): the next revolution in reproductive genetics? Hum Reprod Update. 2020;26(1):16–42. doi: 10.1093/humupd/dmz033
- Orvieto R, Shimon C, Rienstein S, et al. Do human embryos have the ability of self-correction? Reprod Biol Endocrinol. 2020;18(1):98. doi: 10.1186/s12958-020-00650-8
- Singla S, Iwamoto-Stohl LK, Zhu M, et al. Autophagy-mediated apoptosis eliminates aneuploid cells in a mouse model of chromosome mosaicism. Nat Commun. 2020;11(1):2958. doi: 10.1038/s41467-020-16796-3
- Yang M, Rito T, Metzger J, et al. Depletion of aneuploid cells in human embryos and gastruloids. Nat Cell Biol. 2021;23(4):314–321. doi: 10.1038/s41556-021-00660-7
- You Y, Stelzl P, Zhang Y, et al. Novel 3D in vitro models to evaluate trophoblast migration and invasion. Am J Reprod Immunol. 2019;81(3):e13076. doi: 10.1111/aji.13076
- Rubio I, Galán A, Larreategui Z, et al. Clinical validation of embryo culture and selection by morphokinetic analysis: a randomized, controlled trial of the EmbryoScope. Fertil Steril. 2014;102(5):1287–1294.e5. doi: 10.1016/j.fertnstert.2014.07.738
- Goodman LR, Goldberg J, Falcone T, et al. Does the addition of time-lapse morphokinetics in the selection of embryos for transfer improve pregnancy rates? A randomized controlled trial. Fertil Steril. 2016;105(2):275–285.e10. doi: 10.1016/j.fertnstert.2015.10.013
- Conaghan J, Chen AA, Willman SP, et al. Improving embryo selection using a computer-automated time-lapse image analysis test plus day 3 morphology: results from a prospective multicenter trial. Fertil Steril. 2013;100(2):412–419.e5. doi: 10.1016/j.fertnstert.2013.04.021
- Armstrong S, Bhide P, Jordan V, et al. Time-lapse systems for embryo incubation and assessment in assisted reproduction. Cochrane Database Syst Rev. 2019;5(5):Cd011320. doi: 10.1002/14651858.CD011320.pub4
- Chavez-Badiola A, Flores-Saiffe-Farías A, Mendizabal-Ruiz G, et al. Embryo Ranking Intelligent Classification Algorithm (ERICA): artificial intelligence clinical assistant predicting embryo ploidy and implantation. Reprod Biomed Online. 2020;41(4):585–593. doi: 10.1016/j.rbmo.2020.07.003
- Barnes J, Brendel M, Gao VR, et al. A non-invasive artificial intelligence approach for the prediction of human blastocyst ploidy: a retrospective model development and validation study. Lancet Digit Health. 2023;5(1):e28–e40. doi: 10.1016/s2589-7500(22)00213-8
- O’Donovan C, Twomey E, Alderman J, et al. Development of a respirometric biochip for embryo assessment. Lab Chip. 2006;6(11):1438–1444. doi: 10.1039/b607622j
- Kurosawa H, Utsunomiya H, Shiga N, et al. Development of a new clinically applicable device for embryo evaluation which measures embryo oxygen consumption. Hum Reprod. 2016;31(10):2321–2330. doi: 10.1093/humrep/dew187
- Altmäe S, Esteban FJ, Stavreus-Evers A, et al. Guidelines for the design, analysis and interpretation of ‘omics’ data: focus on human endometrium. Hum Reprod Update. 2014;20(1):12–28. doi: 10.1093/humupd/dmt048
- De los Santos MJ, Mercader A, Francés A, et al. Role of endometrial factors in regulating secretion of components of the immunoreactive human embryonic interleukin-1 system during embryonic development. Biol Reprod. 1996;54(3):563–574. doi: 10.1095/biolreprod54.3.563
- Simón C, Moreno C, Remohí J, et al. Cytokines and embryo implantation. J Reprod Immunol. 1998;39(1–2):117–131. doi: 10.1016/s0165-0378(98)00017-5
- Krüssel JS, Simón C, Rubio MC, et al. Expression of interleukin-1 system mRNA in single blastomeres from human preimplantation embryos. Hum Reprod. 1998;13(8):2206–2211. doi: 10.1093/humrep/13.8.2206
- Taşkın EA, Baltacı V, Cağıran G, et al. Detection of IL-1β in culture media supernatants of pre-implantation human embryos; its relation with embryo grades and development. Gynecol Endocrinol. 2012;28(4):296–298. doi: 10.3109/09513590.2011.631627
- Barañao RI, Piazza A, Rumi LS, et al. Determination of IL-1 and IL-6 levels in human embryo culture-conditioned media. Am J Reprod Immunol. 1997;37(2):191–194. doi: 10.1111/j.1600-0897.1997.tb00212.x
- Fazleabas AT, Kim JJ, Strakova Z. Implantation: embryonic signals and the modulation of the uterine environment – a review. Placenta. 2004;25(Suppl A):S26–S31. doi: 10.1016/j.placenta.2004.01.014
- Salama KM, Alloush MK, Al Hussini RM. Are the cytokines TNF alpha and IL 1Beta early predictors of embryo implantation? Cross sectional study. J Reprod Immunol. 2020;137:102618. doi: 10.1016/j.jri.2019.102618
- Dominguez F, Meseguer M, Aparicio-Ruiz B, et al. New strategy for diagnosing embryo implantation potential by combining proteomics and time-lapse technologies. Fertil Steril. 2015;104(4):908–914. doi: 10.1016/j.fertnstert.2015.06.032
- Zmuidinaite R, Sharara FI, Iles RK. Current advancements in noninvasive profiling of the embryo culture media secretome. Int J Mol Sci. 2021;22(5). doi: 10.3390/ijms22052513
- Bouvier S, Paulmyer-Lacroix O, Molinari N, et al. Soluble CD146, an innovative and non-invasive biomarker of embryo selection for in vitro fertilization. PLoS One. 2017;12(3):e0173724. doi: 10.1371/journal.pone.0173724
- Butler SA, Luttoo J, Freire MO, et al. Human chorionic gonadotropin (hCG) in the secretome of cultured embryos: hyperglycosylated hCG and hCG-free beta subunit are potential markers for infertility management and treatment. Reprod Sci. 2013;20(9):1038–1045. doi: 10.1177/1933719112472739
- Abreu CM, Thomas V, Knaggs P, et al. Non-invasive molecular assessment of human embryo development and implantation potential. Biosens Bioelectron. 2020;157:112144. doi: 10.1016/j.bios.2020.112144
- Yie SM, Balakier H, Motamedi G, et al. Secretion of human leukocyte antigen-G by human embryos is associated with a higher in vitro fertilization pregnancy rate. Fertil Steril. 2005;83(1):30–36. doi: 10.1016/j.fertnstert.2004.06.059
- Freis A, Roesner S, Marshall A, et al. Non-invasive embryo assessment: altered individual protein profile in spent culture media from embryos transferred at day 5. Reprod Sci. 2021;28(7):1866–1873. doi: 10.1007/s43032-020-00362-9
- Cortezzi SS, Garcia JS, Ferreira CR, et al. Secretome of the preimplantation human embryo by bottom-up label-free proteomics. Anal Bioanal Chem. 2011;401(4):1331–1339. doi: 10.1007/s00216-011-5202-1
- Dekel N, Gnainsky Y, Granot I, et al. Inflammation and implantation. Am J Reprod Immunol. 2010;63(1):17–21. doi: 10.1111/j.1600-0897.2009.00792.x
- Díaz RR, Zamora RB, Sánchez RV, et al. Embryo sHLA-G secretion is related to pregnancy rate. Zygote. 2019;27(2):78–81. doi: 10.1017/s0967199419000054
- Rebmann V, Switala M, Eue I, et al. Rapid evaluation of soluble HLA-G levels in supernatants of in vitro fertilized embryos. Hum Immunol. 2007;68(4):251–258. doi: 10.1016/j.humimm.2006.11.003
补充文件
