Breastfeeding in the prevention of long-term consequences of neuropsychiatric pathology in offspring with gestational diabetes mellitus

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

This literature review summarizes modern concepts of gestational diabetes mellitus as an independent risk factor for the development of long-term neuropsychiatric diseases in offspring and the mechanisms of their programming in this complication of pregnancy in the absence of the protective role of maternal melatonin as a consequence of chronodestruction. The article presents literature data on the composition of breast milk and the participation of its endogenous melatonin, microRNAs, long non-coding RNAs, stem cells, and microbiome in reprogramming epigenetic disorders as a result of adverse effects in the antenatal period, which helps to reduce the likelihood of developing neuropsychiatric pathology later in life. It is emphasized that breastfeeding during the first six months of life and later, along with complementary foods under the age of two years and older, is exclusively a physiological and unsurpassed method of preventing long-term consequences of impaired brain development in offspring with gestational diabetes mellitus.

全文:

受限制的访问

作者简介

Inna Evsyukova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

编辑信件的主要联系方式.
Email: eevs@yandex.ru
ORCID iD: 0000-0003-4456-2198
SPIN 代码: 4444-4567

MD, Dr. Sci. (Medicine), Professor

俄罗斯联邦, Saint Petersburg

参考

  1. Rodolaki K, Pergialiotis V, Iakovidou N, et al. The impact of maternal diabetes on the future health and neurodevelopment of the offspring: a review of the evidence. Front Endocrinol. 2023;14. doi: 10.3389/fendo.2023.112562
  2. Evsyukova II. Gestational diabetes mellitus as a risk factor for neuropsychiatric pathology in offspring. Journal of Obstetrics and Women’s Diseases. 2024;73(1):101–111. (In Russ.) EDN: DSDFSC doi: 10.17816/JOWD62420
  3. Nahum Sacks K, Friger M, Shoham-Vardi I, et al. Prenatal exposure to gestational diabetes mellitus as an independent risk factor for long-term neuropsychiatric morbidity of the offspring. Am J Obstet Gynecol. 2016;215(3):380.e1–380.e7. doi: 10.1016/j.ajog.2016.03.030
  4. Cai S, Qiu A, Broekman BF, et al. The influence of gestational diabetes on neurodevelopment of children in the first two years of life: a prospective study. PLoS ONE. 2016;11(9). doi: 10.1371/journal.pone.0162113
  5. Nikitina IL, Konoplya IS, Polyanskaya AA, et al. Characterization of psychological and physical development in children of gestation diabetes pregnancies. Medical Council. 2017;(9):14–20. EDN: ZCIRJX (In Russ.) doi: 10.21518/2079-701X-2017-9-14-20
  6. Alves JM, Smith A, Chow T, et al. Prenatal exposure to gestational diabetes mellitus is associated with mental health outcomes and physical activity has a modifying role. Res Square. 2023;29. doi: 10.21203/rs.3.rs-3290222/v1
  7. Zhao L, Li X, Liu G, et al. The association of maternal diabetes with attention deficit and hyperactivity disorder in offspring: a meta-analysis. Neuropsychiatr Dis Treat. 2019;15:675–684. doi: 10.2147/NDT.S189200
  8. Wan H, Zhang C., Li H, et al. Association of maternal diabetes with autism spectrum disorders in offspring. Medicine. 2018;97(2). doi: 10.1097/MD.0000000000009438
  9. Silva RNA, Yu Y, Liew Z, et al. Associations of maternal diabetes during pregnancy with psychiatric disorders in offspring during the first 4 decades of life in a population-based Danish birth cohort. JAMA Netw Open. 2021;4(10). doi: 10.1001/jamanetworkopen.2021.28005
  10. Kong L, Nilsson IA, Brismar K, et al. Associations of different types of maternal diabetes and body mass index with offspring psychiatric disorders. JAMA Netw Open. 2020;3(2). doi: 10.1001/jamanetworkopen.2019.20787
  11. Evsyukova II. Molecular mechanisms of the functioning system mother-placenta-fetus in women with obesity and gestational diabetes mellitus. Molecular medicine. 2020;18(1):11–15. EDN: ORKJZD doi: 10.29296/24999490-2020-01-02
  12. Carrasco-Wonga I, Mollerb A, Giachinic FR, et al. Placental structure in gestational diabetes mellitus. Biochim Biophys ActaMol Basis Dis. 2020;1866(2). doi: 10.1016/j.bbadis.2019.165535
  13. Bedell S, Hutson J, de Vrijer B, et al. Effects of maternal obesity and gestational diabetes mellitus on the placenta: current knowledgeand targets for therapeutic interventions. Curr Vasc Pharmacol. 2021;19(2):176–192. doi: 10.2174/1570161118666200616144512
  14. Piazza FV, Segabinazi E, de Meireles ALF, et al. Severe uncontrolled maternal hyperglycemia induces microsomia and neurodevelopment delay accompanied by apoptosis, cellular survival, and neuroinflammatory deregulation in rat offspring hippocampus. Cell Mol Neurobiol. 2019;39(3):401–414. doi: 10.1007/s10571-019-00658-8
  15. Sulyok E, Farkas B, Bodis. J. Pathomechanisms of prenatally programmed adult diseases. Antioxidants. 2023;12(7):1354. doi: 10.3390/antiox12071354
  16. Valencia-Ortega J, Saucedo R, Sánchez-Rodríguez MA, et al. Epigenetic alterations related to gestational diabetes mellitus. Int J Mol Sci. 2021;22(17):9462. doi: 10.3390/ijms22179462
  17. Elliott HR, Sharp GC, Relton CL, et al. Epigenetics and gestational diabetes: a review of epigenetic epidemiology studies and their use to explore epigenetic mediation and improve prediction. Diabetologia. 2019;62(12):2171–178. doi: 10.1007/s00125-019-05011-8
  18. Xu P, Dong S, Wu L, et al. Maternal and placental DNA methylation changes associated with the pathogenesis of gestational diabetes mellitus. Nutrients. 2023;15(1):70. doi: 10.3390/nu15010070
  19. Edwards PD, Lavergne SG, McCaw LK, et al. Maternal effects in mammals: broadening our understanding of offspring programming. Front Neuroendocrinol. 2021;62:100924. doi: 10.1016/j.yfrne.2021.100924
  20. Howe CG, Cox B, Fore R, et al. Maternal gestational diabetes mellitus and newborn DNA methylation: findings from the pregnancy and childhood epigenetics consortium. Diabetes Care. 2020;43(1):98–105. doi: 10.2337/dc19-0524
  21. Nobile S, Di Sipio Morgia. C, Vento G. Perinatal origins of adult disease and opportunities for health promotion: a narrative review. J Pers Med. 2022;12(2):157. doi: 10.3390/jpm12020157
  22. Aviel-Shekler K, Hamshawi Y, Sirhan W, et al. Gestational diabetes induces behavioral and brain gene transcription dysregulation in adult offspring. Transl Psychiatry. 2020;10(1):412. doi: 10.1038/s41398-020-01096-7
  23. Li L, Maire CL, Bilenky M, et al. Epigenomic programming in early fetal brain development. Epigenomics. 2020;12(12):1053–1070. doi: 10.2217/epi-2019-0319
  24. Lehnen H, Zechner U, Haaf T. Epigenetics of gestational diabetes mellitus and offspring health: the time for action is in early stages of life. Mol Hum Reprod. 2013;19(7):415–422. doi: 10.1093/molehr/gat020
  25. Alba-Linares JJ, Pérez RF, Tejedor JR, et al. Maternal obesity and gestational diabetes reprogram the methylome of offspring beyond birth by inducing epigenetic signatures in metabolic and developmental pathways. Cardiovasc Diabetol. 2023;22(4):44. doi: 10.1186/s12933-023-01774-y
  26. Bale TL. Epigenetic and transgenerational reprogramming of brain development. Nat Rev Neurosci. 2015;16(6):332–344. doi: 10.1038/nrn3818
  27. Méndez N, Corvalan F, Halabi D, et al. From gestational chronodisruption to noncommunicable diseases: Pathophysiological mechanisms of programming of adult diseases, and the potential therapeutic role of melatonin. J Pineal Res. 2023;75(4). doi: 10.1111/jpi.12908
  28. Korkmaz A, Rosales-Corral S, Reiter RJ. Gene regulation by melatonin linked to epigenetic phenomena. Gene. 2012;503(1):1−11. doi: 10.1016/j.gene.2012.04.040
  29. Erren TS, Reiter RJ. Melatonin: a universal time messenger. Neuro Endocrinol Lett. 2015;36(3):187−192.
  30. Cipolla-Neto J, do Amaral FG. Melatonin as a hormone: new physiological and clinical insights. Endocr Rev. 2018;39(6):990−1028. doi: 10.1210/er.2018-00084
  31. Gomes PRL, Motta-Teixeira LC, Gallo CC, et al. Maternal pineal melatonin in gestation and lactation physiology, and in fetal development and programming. Gen Comp Endocrinol. 2021;300:113633. doi: 10.1016/j.ygcen.2020.113633
  32. Astiz M, Oster H. Feto-maternal crosstalk in the development of the circadian clock system. Front Neurosci. 2021;14:631687. doi: 10.3389/fnins.2020.631687
  33. Varcoe TJ, Gatford KL, Kennaway DJ. Maternal circadian rhythms and the programming of adult health and disease. Am J Physiol Regul Integr Comp Physiol. 2017;314(2):231–241. doi: 10.1152/ajpregu.00248.2017
  34. Torres-Farfan C, Cipolla Neto J, Herzog ED. Editorial: decoding the fetal circadian system and its role in adult sickness and health: melatonin, a dark history. Front Endocrinol. (Lausanne). 2020;11:380. doi: 10.3389/fendo.2020
  35. Motta-Teixeira LC, Machado-Nils AV, Battagello DS, et al. The absence of maternal pineal melatonin rhythm during pregnancy and lactation impairs offspring physical growth, neurodevelopment, and behavior. Horm Behav. 2018;105:146–156. doi: 10.1016/j.yhbeh.2018.08.006
  36. Mendez N, Halabi D, Salazar-Petres ER, et al. Maternal melatonin treatment rescuses endocrine, inflammatory, and transcriptional deregulation in the adult rat female offspring from gestational chronodistruption. Front Neurosci. 2022;16:1039977. doi: 10.3389/fnins.2022.1039977
  37. Vine T, Brown GM, Frey BN, et al. Melatonin use during pregnancy and lactation: a scoping review of human studies. Psychiatry. 2022;44(3):342–348. doi: 10.1590/1516-4446-2021-2156
  38. Kamfar WW, Khraiwesh HM, Ibrahim MO, et al. Comprehensive review of melatonin as a promising nutritional and nutraceutical supplement. Heliyon. 2024;10(2):e24266. doi: 10.1016/j.heliyon.2024.e24266
  39. Hansell JA, Richter HG, Camm EJ, et al. Maternal melatonin: effective intervention against developmental programming of cardiovascular dysfunction in adult offspring of complicated pregnancy. J Pineal Res. 2022;72(1):e12766. doi: 10.1111/jpi.12766
  40. Pluta R, Furmaga-Jabłonska W, Januszewski S, et al. Melatonin: a potential candidate for the treatment of experimental and clinical perinatal asphyxia. Molecules. 2023;28(3):1105. doi: 10.3390/molecules28031105
  41. Häusler S, Robertson NJ, Golhen K, et al. Melatonin as a therapy for preterm brain injury: what is the evidence? Antioxidants. 2023;12(8):1630. doi: 10.3390/antiox12081630
  42. Babaee A, Eftekhar Vaghefi SH, Dehghani Soltani S, et al. Hippocampal astrocyte response to melatonin following neural damage induction in rats. Basic Clin Neuroscience. 2021;12(2):177–186. doi: 10.32598/bcn.12.2.986.1
  43. Hardeland R. Melatonin, its metabolites and their interference with reactive nitrogen compounds. Molecules. 2021;26(13):4105. doi: 10.3390/molecules26134105
  44. Garofoli F, Franco V, Accorsi P, et al. Fate of melatonin orally administered in preterm newborns: antioxidant performance and basis for neuroprotection. J Pineal Res. 2024;76(1):e12932. doi: 10.1111/jpi.12932
  45. Chiurazzi M, Cozzolino M, Reinelt T, et al. Human milk and brain development in infants. Reprod Med. 2021;2(2):107–117. doi: 10.3390/reprodmed2020011
  46. Vizzari G, Morniroli D, Ceroni F, et al. Human milk, more than simple nourishment. Children (Basel). 2021;8(10):863. doi: 10.3390/children8100863
  47. Italianer MF, Naninck EFG, Roelants JA, et al. Circadian variation in human milk composition, a systematic review. Nutrients. 2020;12(8):2328. doi: 10.3390/nu12082328
  48. Gila-Díaz A, Herranz Carrillo G, Cañas S, et al. Influence of maternal age and gestational age on breast milk antioxidants during the first month of lactation. Nutrients. 2020;12(9):2569. doi: 10.3390/nu12092569
  49. Hahn-Holbrook J, Saxbe D, Bixby C, et al. Human milk as “chrononutrition”: implications for child health and development. Pediatr Res. 2019;85(7):936–942. doi: 10.1038/s41390-019-0368-x
  50. Wong SD, Wright Jr KP, Spencer RL, et al. Development of the circadian system in early life: maternal and environmental factors. J Physiol Anthropol. 2022;41(1):22. doi: 10.1186/s40101-022-00294-0
  51. Caba-Flores MD, Ramos-Ligonio A, Camacho-Morales A, et al. Breast milk and the importance of chrononutrition. Front Nutr. 2022;9:867507. doi: 10.3389/fnut.2022.867507
  52. Pontes GN, Cardoso EC, Carneiro-Sampaio MMS, et al. Injury switches melatonin production source from endocrine (pineal) to paracrine (phagocytes) – melatonin in human colostrum and colostrum phagocytes. J Pineal Res. 2006;41(2):136–141. doi: 10.1111/j.1600-079X.2006.00345.x
  53. Bonmatí-Carrión MÁ, Rol MA. Melatonin as a mediator of the gut microbiota-host interaction: implications for health and disease. Antioxidants. (Basel). 2023;13(1):34. doi: 10.3390/antiox13010034
  54. Anderson G, Vaillancourt C, Maes M, et al. Breastfeeding and the gut-brain axis: Is there a role for melatonin? Biomol Concepts. 2017;8(3-4):185–195. doi: 10.1515/bmc-2017-0009
  55. Nyárády K, Turai R, Funke S, et al. Effects of perinatal factors on sirtuin 3, 8-hydroxy-2’-deoxyguanosine, brain-derived neurotrophic factor and serotonin in cord blood and early breast milk: an observational study. Intern Breastfeeding J. 2020:15(1):57. doi: 10.1186/s13006-020-00301-z5-НТ
  56. Illnerova H, Buresova M, Presl J. Melatonin rhythm in human milk. J Clin Endocrinol Metab. 1993;77(3):838–841. doi: 10.1210/jcem.77.3.8370707
  57. Marshall AM, Nommsen-Rivers LA, Hernandez LL, et al. Serotonin transport and metabolism in the mammary gland modulates secretory activation and involution. J Clin Endocrinol Metab. 2010;95(2):837–846. doi: 10.1210/jc.2009-1575
  58. Cubero J, Valero V, Sánchez J, et al. The circadian rhythm of tryptophan in breast milk affects the rhythms of 6-sulfatoxymelatonin and sleep in newborn. Neuro Endocrinol Lett. 2005;26(6):657–661.
  59. Katzer D, Pauli L, Mueller A, et al. Melatonin concentrations and antioxidative capacity of human breast milk according to gestational age and the time of day. J Hum Lact. 2016;32(4):105–110. doi: 10.1177/0890334415625217
  60. Sebastiani G, Navarro-Tapia E, Almeida-Toledano L, et al. Effects of antioxidant intake on fetal development and maternal/neonatal health during pregnancy. Antioxidants. 2022;11(4):648. doi: 10.3390/antiox11040648
  61. Chen CC, Liu L, Ma F, et al. Elucidation of exosome migration across the blood–brain barrier model in vitro. Cell Mol Bioeng. 2016;9(4):509–529. doi: 10.1007/s12195-016-0458-3
  62. Qin Y, Shi W, Zhuang J, et al. Variations in melatonin levels in preterm and term human breast milk during the first month after delivery. Sci Rep. 2019;9(1):17984. doi: 10.1038/s41598-019-54530-2
  63. Aparici-Gonzalo S, Carrasco-García Á, Gombert M, et al. Melatonin content of human milk: the effect of mode of delivery. Breastfeed Med. 2020;15(9):589–594. doi: 10.1089/bfm.2020.0157
  64. Verduci E, Banderali G, Barberi S, et al. Epigenetic effects of human breast milk. Nutrients. 2014;6(4):1711–1724. doi: 10.3390/nu6041711
  65. Moody L, Chen H, Pan YX. Early-life nutritional programming of cognition – the fundamental role of epigenetic mechanisms in mediating the relation between early-life environment and learning and memory process. Adv Nutr. 2017;8(2):337–350. doi: 10.3945/an.116.014209
  66. Kramer MS, Aboud F, Mironova E, et al. Breastfeeding and child cognitive development: New evidence from a large randomized trial. Arch Gen Psychiatry. 2008;65(5):578–584. doi: 10.1001/archpsyc.65.5.578
  67. Anjos T, Altmäe S, Emmett P, et al. Nutrition and neurodevelopment in children: focus on nutrimenthe project. Eur J Nutr. 2013;52(8):1825–1842. doi: 10.1007/s00394-013-0560-4
  68. Alsaweed M, Hartmann PE, Geddes DT, et al. MicroRNAs in breastmilk and the lactating breast: potential immunoprotectors and developmental regulators for the infant and the mother. Int J Environ Res Public Health. 2015;12(11):3981–14020. doi: 10.3390/ijerph121113981
  69. Melnik BC, Stremmel W, Weiskirchen R, et al. Exosome-derived microRNAs of human milk and their effects on infant health and development. Biomolecules. 2021;11(6):851. doi: 10.3390/biom11060851
  70. Tingö L, Ahlberg E, Johansson L, et al. Non-coding RNAs in human breast milk: a systematic review. Front Immunol. 2021;12:725323. doi: 10.3389/fimmu.2021.725323
  71. Hatmal MM, Al-Hatamleh MAI, Olaimat AN, et al. Immunomodulatory properties of human breast milk: microrna contents and potential epigenetic effects. Biomedicines. 2022;10(6):1219. doi: 10.3390/biomedicines10061219
  72. Kersin SG, Ozek E. Breast milk stem cells: are they magic bullets in neonatology? Turk Arch Pediatr. 2021;56(3):187–191. doi: 10.5152/TurkArchPediatr.2021.21006
  73. Gialeli G, Panagopoulou O, Liosis G, et al. Potential epigenetic effects of human milk on infants’ neurodevelopment. Nutrients. 2023;15(16):3614. doi: 10.3390/nu15163614
  74. Vuong HE. Intersections of the microbiome and early neurodevelopment. Int Rev Neurobiol. 2022;167:1–23. doi: 10.1016/bs.irn.2022.06.004
  75. Walsh C, Lane JA, Van Sinderen D, et al. Human milk oligosaccharides: shaping the infant gut microbiota and supporting health. J Funct Foods. 2020;72:104074. doi: 10.1016/j.jff.2020.104074
  76. Lu J, Claud EC. Connection between gut microbiome and brain development in preterm infants. Dev Psychobiol. 2019;61(5):739–751. doi: 10.1002/dev.21806
  77. Fan Y, McMath AL, Donovan SM. Review on the impact of milk oligosaccharides on the brain and neurocognitive development in early life. Nutrients. 2023;15(17):3743. doi: 10.3390/nu1517374377
  78. Berger PK, Plows JF, Jones RB, et al. Human milk oligosaccharide 2’-fucosyllactose links feedings at 1 month to cognitive development at 24 months in infants of normal and overweight mothers. PLoS One. 2020;15(2):e0228323. doi: 10.1371/journal.pone.0228323
  79. Campoy C, Escolano-Margarit MV, Anjos T, et al. Omega 3 fatty acids on child growth, visual acuity and neurodevelopment. Br J Nutr. 2012;107(2):85–106. doi: 10.1017/S0007114512001493
  80. Suwaydi MA, Lai CT, Rea A, et al. Circadian variation in human milk hormones and macronutrients. Nutrients. 2023;15(17):3729. doi: 10.3390/nu15173729
  81. Peila C, Gazzolo D, Bertino E, et al. Influence of diabetes during pregnancy on human milk composition. Nutrients. 2020;12(1):185. doi: 10.3390/nu12010185
  82. Dugas C, Laberee L, Perron J, et al. Gestational diabetes mellitus, human milk composition, and infant growth. Breastfeed Med. 2023;18(1):14–22. doi: 10.1089/bfm.2022.0085
  83. Shah KB, Chernausek SD, Garman LD, et al. Human milk exosomal microRNA: associations with maternal overweight/obesity and infant body composition at 1 month of life. Nutrients. 2021;13(4):1091. doi: 10.3390/nu13041091
  84. Azulay Chertok IR, Haile ZT, Eventov-Friedman S, et al. Influence of gestational diabetes mellitus on fatty acid concentrations in human colostrums. Nutrition. 2017;36:17–21. doi: 10.1016/j.nut.2016.12.001
  85. Klein K, Bancher-Todesca D, Graf T, et al. Concentration of free amino acids in human milk of women with gestational diabetes mellitus and healthy women. Breastfeed Med. 2013;8(1):111–115. doi: 10.1089/bfm.2011.0155
  86. Wen L, Wu Y, Yang Y, et al. Gestational diabetes mellitus changes the metabolomes of human colostrum, transition milk and mature milk. Med Sci Monit. 2019;25:6128–6152. doi: 10.12659/MSM.915827
  87. Suwaydi MA, Zhou X, Perrella SL, et al. The impact of gestational diabetes mellitus on human milk metabolic hormones: a systematic review. Nutrients. 2022;14(17):3620. doi: 10.3390/nu14173620
  88. Dou Y, Luo Y, Xing Y, et al. Human milk oligosaccharides variation in gestational diabetes mellitus mothers. Nutrients. 2023;15(6):1441. doi: 10.3390/nu15061441
  89. Kimberly N, Doughty A, Sarah N. Barriers and benefits to breastfeeding with gestational diabetes. Semin Perinatol. 2021;45(2):151385. doi: 10.1016/j.semperi.2020.151385

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eсо-Vector, 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.