The relationship between mineral and vitamin statuses in the blood serum of pregnant women with fetal congenital malformations

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Background: Changes occurring in the body during pregnancy have a significant impact on metabolism, which determines the importance of monitoring nutrition and taking vitamin and mineral supplements for the health of the mother and the normal development of the fetus. An imbalance of vitamins and trace elements in the body leads to disruption of cellular processes, which may increase the risk of fetal congenital malformations, particularly those associated with neural tube defects.

Aim: The aim of this study was to evaluate the relationship between mineral and vitamin statuses in the blood serum of pregnant women with fetal congenital malformations.

Materials and methods: The blood serum was analyzed for a range of essential minerals (magnesium, calcium, copper, zinc, iron), inorganic phosphorus, iron deficiency anemia parameters, as well as vitamins (D, B12, folic acid) and homocysteine levels in 82 pregnant women with various fetal congenital malformations at 19.0 (15.0–21.0) weeks of gestation. All patients were divided into three study groups: Group 1 consisted of women without chromosomal abnormalities and with fetal neural tube defects (n = 18); Group 2 involved individuals without chromosomal abnormalities and fetal neural tube defects (n = 35); and Group 3 comprised patients with chromosomal abnormalities, predominantly Down syndrome (n = 29).

Results: The patients of all of the study groups were comparable in terms of body mass index, number of pregnancies, births, and abortions in the medical history, as well as the frequency of diabetes mellitus, endocrine diseases, and exposure to exogenous damaging factors. Women with fetal neural tube defects had a higher percentage of acute respiratory viral infection cases in early pregnancy, lower vitamin B12 levels, and lower serum concentrations of inorganic phosphorus, which had a direct correlation with blood zinc levels.

Conclusions: The data obtained indicate the need for further research with larger samples to clarify the role of trace elements and vitamins in the formation of various fetal congenital malformations and the feasibility of prescribing B vitamins and dietary supplements that contain zinc and phosphorus compounds before or during pregnancy.

全文:

受限制的访问

作者简介

Yulia Milyutina

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

编辑信件的主要联系方式.
Email: milyutina1010@mail.ru
ORCID iD: 0000-0003-1951-8312
SPIN 代码: 6449-5635

Cand. Sci. (Biology)

俄罗斯联邦, Saint Petersburg

Margarita Shengelia

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: bakleicheva@gmail.com
ORCID iD: 0000-0002-0103-8583
SPIN 代码: 7831-2698

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Anastasia Sazonova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: nastenka.sazonova.97@mail.ru
ORCID iD: 0009-0007-4567-7831
SPIN 代码: 8721-1390
俄罗斯联邦, Saint-Petersburg

Olesya Bespalova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: shiggerra@mail.ru
ORCID iD: 0000-0002-6542-5953
SPIN 代码: 4732-8089
Scopus 作者 ID: D-3880-2018

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Andrey Korenevsky

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: a.korenevsky@yandex.ru
ORCID iD: 0000-0002-0365-8532
SPIN 代码: 7942-6016

Dr. Sci. (Biology)

俄罗斯联邦, Saint-Petersburg

参考

  1. Li H, Zhang J, Chen S, et al. Genetic contribution of retinoid-related genes to neural tube defects. Hum Mutat. 2018;39(4):550–562. dоi: 10.1002/humu.23397
  2. Sirinoglu HA, Pakay K, Aksoy M, et al. Comparison of serum folate, 25-OH vitamin D, and calcium levels between pregnants with and without fetal anomaly of neural tube origin. J Matern Fetal Neonatal Med. 2017;31(11):1490–1493. dоi: 10.1080/14767058.2017.1319924
  3. Kirke PN, Molloy AM, Daly LE, et al. Maternal plasma folate and vitamin B12 are independent risk factors for neural tube defects. Q J Med. 1993;86(11):703–708.
  4. Groenen PMW, van Rooij IALM, Peer PGM, et al. Marginal maternal vitamin B12 status increases the risk of offspring with Spina bifida. Am J Obstet Gynecol. 2004;191(1):11–17. dоi: 10.1016/j.ajog.2003.12.032
  5. Molloy AM, Pangilinan F, Brody LC. Genetic risk factors for folate-responsive neural tube defects. Annu Rev Nutr. 2017;37(1):269–291. dоi: 10.1146/annurev-nutr-071714-034235
  6. Lewicka I, Kocyłowski R, Grzesiak M, et al. Selected trace elements concentrations in pregnancy and their possible role – literature review. Ginekologia Polska. 2017;88(9):509–514. dоi: 10.5603/GP.a2017.0093
  7. Willekens J, Runnels LW. Impact of Zinc Transport mechanisms on embryonic and brain development. Nutrients. 2022;14(12):2526. dоi: 10.3390/nu14122526
  8. Suliburska J, Kocyłowski R, Komorowicz I, et al. Concentrations of mineral in amniotic fluid and their relations to selected maternal and fetal parameters. Biol Trace Elem Res. 2015;172(1):37–45. dоi: 10.1007/s12011-015-0557-3
  9. Tian T, Liu J, Lu X, et al. Selenium protects against the likelihood of fetal neural tube defects partly via the arginine metabolic pathway. Clin Nutr. 2022;41(4):838–846. dоi: 10.1016/j.clnu.2022.02.006
  10. Stothard KJ, Tennant PWG, Bell R, et al. Maternal overweight and obesity and the risk of congenital anomalies. JAMA. 2009;301(6):636. dоi: 10.1001/jama.2009.113
  11. Korkmaz L, Baştuğ O, Kurtoğlu S. Maternal obesity and its short- and long-term maternal and infantile effects. J Clin Res Pediatr Endocrinol. 2016;8(2):114–124. dоi: 10.4274/jcrpe.2127
  12. Werler MM, Ahrens KA, Bosco JLF, et al. Use of antiepileptic medications in pregnancy in relation to risks of birth defects. Ann Epidemiol. 2011;21(11):842–850. dоi: 10.1016/j.annepidem.2011.08.002
  13. Becerra JE, Khoury MJ, Cordero JF, et al. Diabetes mellitus during pregnancy and the risks for specific birth defects: a population-based case-control study. Pediatrics. 1990;85(1):1–9.
  14. Kakebeen AD, Niswander L. Micronutrient imbalance and common phenotypes in neural tube defects. Genesis. 2021;59(11):e23455. dоi: 10.1002/dvg.23455
  15. Cavdar AO, Bahceci M, Akar N, et al. Zinc status in pregnancy and the occurrence of anencephaly in Turkey. J Trace Elem Electrolytes Health Dis. 1988;2(1):9–14.
  16. Groenen PMW, van Rooij IALM, Peer PGM, et al. Low maternal dietary intakes of iron, magnesium, and niacin are associated with Spina bifida in the offspring. J Nutr. 2004;134(6):1516–1522. dоi: 10.1093/jn/134.6.1516
  17. Shaw GM, Todoroff K, Schaffer DM, et al. Periconceptional nutrient intake and risk for neural tube defect-affected pregnancies. Epidemiology. 1999;10(6):711–716.
  18. Burgess AMC, Vere DW. Teratogenic effects of some calcium channel blocking agents in xenopus embryos. Pharmacol Toxicol. 2009;64(1):78–82. dоi: 10.1111/j.1600-0773.1989.tb00605.x
  19. Durlach J, Pages N, Bac P, et al, New data on the importance of gestational Mg deficiency. Magnes Res. 2004;17(2):116–125.
  20. Sergeenko OM, Savin DM, Diachkov KA. Association of spinal cord abnormalities with vertebral anomalies: an embryological perspective. Childs Nerv Syst. 2024;40(5):1415–1425. dоi: 10.1007/s00381-024-06336-5
  21. Wysocka J, Wasilewska A, Żelazowska B, et al. Serum 25-hydroxyvitamin D, osteocalcin, and parathormone status in children with meningomyelocele. Neuropediatrics. 2012;43(06):314–319. dоi: 10.1055/s-0032-1327126
  22. Taylor CW, Tovey SC. From parathyroid hormone to cytosolic Ca2+ signals. Biochem Soc Trans. 2012;40(1):147–152. dоi: 10.1042/BST20110615
  23. Berndt T, Kumar R, Novel mechanisms in the regulation of phosphorus homeostasis. Physiology. 2009;24(1):17–25. dоi: 10.1152/physiol.00034.2008
  24. Umehara T, Mimori M, Kokubu T, et al. Serum phosphorus levels associated with nigrostriatal dopaminergic deficits in drug-naïve Parkinson’s disease. J Neurolog Sci. 2024;464:123165. dоi: 10.1016/j.jns.2024.123165
  25. Morota N, Sakamoto H. Surgery for spina bifida occulta: spinal lipoma and tethered spinal cord. Childs Nerv Syst. 2023;39(10):2847–2864. dоi: 10.1007/s00381-023-06024-w
  26. de Bree K, de Bakker BS, Oostra RJ. The development of the human notochord. PLoS One. 2018;13(10):e0205752. dоi: 10.1371/journal.pone.0205752
  27. Dias MS, Partington M. Embryology of myelomeningocele and anencephaly. Neurosurg Focus. 2004;16(2):E1. dоi: 10.3171/foc.2004.16.2.2
  28. Isaković J, Šimunić I, Jagečić D, et al. Overview of neural tube defects: gene–environment interactions, preventative approaches and future perspectives. Biomedicines. 2022;10(5):965. dоi: 10.3390/biomedicines10050965
  29. Juriloff DM, Harris MJ. Insights into the etiology of mammalian neural tube closure defects from developmental, genetic and evolutionary studies. J Dev Biol. 2018;6(3):22. dоi: 10.3390/jdb6030022
  30. Yang J, Lee JY, Kim KH, et al. Disorders of secondary neurulation: mainly focused on pathoembryogenesis. J Korean Neurosurg Soc. 2021;64(3):386–405. dоi: 10.3340/jkns.2021.0023
  31. Lu W, Yan J, Wang C, et al. Interorgan communication in neurogenic heterotopic ossification: the role of brain-derived extracellular vesicles. Bone Res. 2024;12(1) dоi: 10.1038/s41413-023-00310-8
  32. Husain SM, Mughal MZ. Mineral transport across the placenta. Arch Dis Child. 1992;67(7):874–878. dоi: 10.1136/adc.67.7_spec_no.874
  33. Li Z, Ren A, Liu J, et al. Maternal flu or fever, medication use, and neural tube defects: a population-based case-control study in Northern China. Birth Defects Res A Clin Mol Teratol. 2007;79(4):295–300. dоi: 10.1002/bdra.20342
  34. Qin L, Chen YJ, Wang TH, et al. Effects of endocrine metabolic factors on hemocyte parameters, tumor markers, and blood electrolytes in patients with hyperglycemia. J Diabetes Res. 2023;2023:1–18. dоi: 10.1155/2023/8905218
  35. Petrova E, Gluhcheva Y, Pavlova E, et al. Effects of salinomycin and deferiprone on lead-induced changes in the mouse brain. Int J Mol Sci. 2023;24(3):2871. dоi: 10.3390/ijms24032871
  36. Petrova E, Pashkunova-Martic I, Schaier M, et al. Effects of subacute cadmium exposure and subsequent deferiprone treatment on cadmium accumulation and on the homeostasis of essential elements in the mouse brain. J Trace Elem Med Biol. 2022;74:127062. dоi: 10.1016/j.jtemb.2022.127062
  37. Moghimi M, Ashrafzadeh S, Rassi S, et al. Maternal zinc deficiency and congenital anomalies in newborns. Pediatr Int. 2017;59(4):443–446. dоi: 10.1111/ped.13176
  38. Maduray K, Moodley J, Soobramoney C, et al. Elemental analysis of serum and hair from pre-eclamptic South African women. J Trace Elem Med Biol. 2017;43:180–186. dоi: 10.1016/j.jtemb.2017.03.004
  39. Jyotsna S. Study of serum zinc in low birth weight neonates and its relation with maternal zinc. J Clin Diagn Res. 2015;9(1):SC01–SC03. dоi: 10.7860/jcdr/2015/10449.5402
  40. Rahmanian M, Jahed FS, Yousefi B, et al. Maternal serum copper and zinc levels and premature rupture of the foetal membranes. J Pak Med Assoc. 2014;64(7):770–774.
  41. Jariwala M, Suvarna S, Kiran Kumar G, et al. Study of the concentration of trace elements fe, zn, cu, se and their correlation in maternal serum, cord serum and colostrums. Indian J Clin Biochemy. 2013;29(2):181–188. dоi: 10.1007/s12291-013-0338-8
  42. King JC. Determinants of maternal zinc status during pregnancy. Am J Clin Nutr. 2000;71(5):1334S–1343S. dоi: 10.1093/ajcn/71.5.1334s
  43. Neggers YH, Singh J. Zinc supplementation to protein-deficient diet in CO-exposed mice decreased fetal mortality and malformation. Biol Trace Elem Res. 2006;114(1–3):269–279. dоi: 10.1385/bter:114:1:269
  44. Adamo AM, Oteiza PI. Zinc deficiency and neurodevelopment: the case of neurons. BioFactors. 2010;36(2):117–124. dоi: 10.1002/biof.91
  45. Supasai S, Aimo L, Adamo AM, et al. Zinc deficiency affects the STAT1/3 signaling pathways in part through redox-mediated mechanisms. Redox Biology. 2017;11:469–481. dоi: 10.1016/j.redox.2016.12.027
  46. Supasai S, Adamo AM, Mathieu P, et al. Gestational zinc deficiency impairs brain astrogliogenesis in rats through multistep alterations of the JAK/STAT3 signaling pathway. Redox Biology. 2021;44:102017. dоi: 10.1016/j.redox.2021.102017
  47. Hurley LS, Swenerton H. Congenital malformations resulting from zinc deficiency in rats. Proc Soc Exp Biol Med. 1966;123(3):692–696. dоi: 10.3181/00379727-123-31578
  48. Sun C, Ding D, Wen Z, et al. Association between micronutrients and hyperhomocysteinemia: a case-control study in Northeast China. Nutrients. 2023;15(8):1895. dоi: 10.3390/nu15081895
  49. Miller JW, Smith A, Troen AM, et al. Excess folic acid and vitamin B12 deficiency: clinical implications? Food and Nutrition Bulletin. 2024;45(1):S67–S72. dоi: 10.1177/03795721241229503
  50. Milyutina YP, Shengelia MO, Bespalova ON, et al. Micronutrient status of pregnant women with fetal congenital malformations. Journal of Obstetrics and Women’s Diseases. 2023;72(5):61–64. EDN: OSSXEP doi: 10.17816/JOWD472088
  51. Chen CP. Syndromes, disorders and maternal risk factors associated with neural tube defects (VI). Taiwan J Obstet Gynecol. 2008;47(3):267–275. dоi: 10.1016/S1028-4559(08)60123-0

补充文件

附件文件
动作
1. JATS XML
2. Figure. Relationships between mineral and vitamin status parameters in the groups of pregnant women with fetal congenital malformations: a, neural tube defects without chromosomal abnormalities; b, without chromosomal abnormalities and neural tube defects; c, chromosomal abnormalities. * p < 0.05; ** p < 0.01; *** p < 0.001. Data are presented as Spearman rank correlation values. BMI, body mass index; TSC, transferrin saturation coefficient

下载 (1MB)

版权所有 © Eсо-Vector, 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.