Autophagy marker dynamics in the fetal brain and placenta of rats in hyperhomocysteinemia
- Authors: Mikhel A.V.1,2, Zalozniaia I.V.1, Shcherbitskaia A.D.1, Vasilev D.S.1,2, Milyutina Y.P.1, Kerkeshko G.O.1, Gorbova A.V.1, Tumanova N.L.2, Arutjunyan A.V.1
-
Affiliations:
- The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
- I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
- Issue: Vol 74, No 1 (2025)
- Pages: 20-55
- Section: Original study articles
- Submitted: 29.11.2024
- Accepted: 06.12.2024
- Published: 22.04.2025
- URL: https://journals.eco-vector.com/jowd/article/view/642378
- DOI: https://doi.org/10.17816/JOWD642378
- ID: 642378
Cite item
Abstract
BACKGROUND: Autophagy is essential for placenta formation and fetal brain development. Maternal hyperhomocysteinemia is a risk factor for pregnancy complications and may affect autophagy processes. However, the dynamics of autophagy markers are not studied enough so far.
AIM: The aim of this study was to assess the dynamics of key autophagy markers in the fetal brain and various parts of the placenta of rats throughout pregnancy under normal conditions and in the presence of maternal hyperhomocysteinemia.
MATERIALS AND METHODS: Pregnant Wistar rats were induced with hyperhomocysteinemia by chronic administration of L-methionine. Placental and fetal brain tissues were collected on days 14 and 20 of gestation. Levels of autophagy markers (Beclin-1; phosphatidylethanolamine conjugated form microtubule-associated protein 1A/1B light chain 3B (LC3B-II); lysosomal associated membrane protein 2 (LAMP-2)] were determined by Western blotting. Ultrastructural changes were examined using electron microscopy.
RESULTS: In the control group, by the end of pregnancy (gestational day 20) compared to gestational day 14, we observed an increase in LAMP-2 level in the maternal part of the placenta and a decrease in LC3B-II level in the fetal part of the placenta. In maternal hyperhomocysteinemia in the maternal part of the placenta, we found an increase in LAMP-2 level on gestational day 14 and in LC3B-II level from gestational day 14 to gestational day 20. In the fetal part of the placenta, under the same conditions, we observed a decrease in LC3B-II level on gestational day 14 and an increase in LAMP-2 level by the end of pregnancy. In the fetal brain, a decrease in Beclin-1 level from gestational day 14 to gestational day 20 was shown in the both study groups, while under the influence of hyperhomocysteinemia, the levels of the autophagy markers remained unchanged. Under L-methionine load, pathological ultrastructural changes were observed in the fetal part of the placenta and fetal brain at the both time points studied. Normally and under the influence of hyperhomocysteinemia, autophagosomes were found in placental cells on gestational days 14 and 20, while in brain cells, they were only present on gestational day 20.
CONCLUSIONS: The data obtained suggest that autophagy activity in the placenta and fetal brain in normal conditions and under maternal hyperhomocysteinemia depends on the gestational age. Changes in the dynamics of autophagy may be a reason for impaired placental formation and dysfunction in hyperhomocysteinemia. The absence of significant changes in autophagy markers in the fetal brain under hyperhomocysteinemia conditions may result from protective mechanisms in the placenta or/and the resilience of autophagy processes in nervous tissue.
Keywords
Full Text

About the authors
Anastasiia V. Mikhel
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: anastasia.michel39@gmail.com
ORCID iD: 0000-0003-1352-9125
SPIN-code: 1064-6884
postgraduate student
Russian Federation, Saint Petersburg; Saint PetersburgIrina V. Zalozniaia
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: irinabiolog2012@yandex.ru
ORCID iD: 0000-0002-0576-9690
SPIN-code: 2488-3790
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgAnastasiia D. Shcherbitskaia
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: nastusiq@gmail.com
ORCID iD: 0000-0002-2083-629X
SPIN-code: 6913-0435
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgDmitrii S. Vasilev
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott; I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: dvasilyev@bk.ru
ORCID iD: 0000-0002-0601-2358
SPIN-code: 3752-5516
Cand. Sci. (Biology)
Russian Federation, Saint Petersburg; Saint PetersburgYuliya P. Milyutina
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: milyutina1010@mail.ru
ORCID iD: 0000-0003-1951-8312
SPIN-code: 6449-5635
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgGleb O. Kerkeshko
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: gkerkeshko@yandex.ru
ORCID iD: 0009-0005-0804-5347
SPIN-code: 3551-0320
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgAlexandra V. Gorbova
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: alekss137@mail.ru
ORCID iD: 0009-0005-9774-8908
Russian Federation, Saint Petersburg
Natalia L. Tumanova
I.M. Sechenov Institute of Evolutionary Physiology and Biochemistry of the Russian Academy of Sciences
Email: natalia.tumanova@iephb.ru
ORCID iD: 0000-0002-9895-7892
SPIN-code: 6072-3084
Cand. Sci. (Biology)
Russian Federation, Saint PetersburgAlexander V. Arutjunyan
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Author for correspondence.
Email: alexarutiunjan@gmail.com
ORCID iD: 0000-0002-0608-9427
SPIN-code: 9938-5277
Dr. Sci. (Biology), Professor, Honored Scientist of the Russian Federation
Russian Federation, Saint PetersburgReferences
- Gómez-Virgilio L, Silva-Lucero MD, Flores-Morelos DS, et al. Autophagy: a key regulator of homeostasis and disease: an overview of molecular mechanisms and modulators. Cells. 2022;11(15):2262. EDN: IMMRIF doi: 10.3390/cells11152262
- Wu X, Won H, Rubinsztein DC. Autophagy and mammalian development. Biochem Soc Trans. 2013;41(6):1489–1494. doi: 10.1042/bst20130185
- Fimia GM, Stoykova A, Romagnoli A, et al. Ambra1 regulates autophagy and development of the nervous system. Nature. 2007;447(7148):1121–1125. doi: 10.1038/nature05925
- Zhao Y, Huang Q, Yang J, et al. Autophagy impairment inhibits differentiation of glioma stem/progenitor cells. Brain Res. 2010;1313:250–258. doi: 10.1016/j.brainres.2009.12.004
- Avagliano L, Doi P, Tosi D, et al. Cell death and cell proliferation in human spina bifida. Birth Defects Res A Clin Mol Teratol. 2016;106(2):104–113. EDN: XZKVAP doi: 10.1002/bdra.23466
- Rice D, Barone S, Jr. Critical periods of vulnerability for the developing nervous system: evidence from humans and animal models. Environ Health Perspect. 2000;108(Suppl 3):511–533. EDN: LUZZRV doi: 10.1289/ehp.00108s3511
- Kuma A, Hatano M, Matsui M, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004;432(7020):1032–1036. EDN: XPAWDV doi: 10.1038/nature03029
- Komatsu M, Waguri S, Ueno T, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005;169(3):425–434. doi: 10.1083/jcb.200412022
- Nakashima A, Yamanaka-Tatematsu M, Fujita N, et al. Impaired autophagy by soluble endoglin, under physiological hypoxia in early pregnant period, is involved in poor placentation in preeclampsia. Autophagy. 2013;9(3):303–316. doi: 10.4161/auto.22927
- Aoki A, Nakashima A, Kusabiraki T, et al. Trophoblast-specific conditional Atg7 knockout mice develop gestational hypertension. Am J Pathol. 2018;188(11):2474–2486. doi: 10.1016/j.ajpath.2018.07.021
- Hiyama M, Kusakabe KT, Takeshita A, et al. Nutrient starvation affects expression of LC3 family at the feto-maternal interface during murine placentation. J Vet Med Sci. 2015;77(3):305–311. doi: 10.1292/jvms.14-0490
- Silva JF, Ocarino NM, Serakides R. Spatiotemporal expression profile of proteases and immunological, angiogenic, hormonal and apoptotic mediators in rat placenta before and during intrauterine trophoblast migration. Reprod Fertil Dev. 2017;29(9):1774–1786. doi: 10.1071/RD16280
- Hung TH, Hsieh TT, Chen SF, et al. Autophagy in the human placenta throughout gestation. PLoS One. 2013;8(12):e83475. EDN: SPZIDZ doi: 10.1371/journal.pone.0083475
- Tian X, Ma S, Wang Y, et al. Effects of placental ischemia are attenuated by 1,25-dihydroxyvitamin D treatment and associated with reduced apoptosis and increased autophagy. DNA Cell Biol. 2016;35(2):59–70. EDN: WVJWOV doi: 10.1089/dna.2015.2885
- Zhang H, Zheng Y, Liu X, et al. Autophagy attenuates placental apoptosis, oxidative stress and fetal growth restriction in pregnant ewes. Environ Int. 2023;173:107806. EDN: BOJYRY doi: 10.1016/j.envint.2023.107806
- Li Y, Zhao X, He B, et al. Autophagy activation by hypoxia regulates angiogenesis and apoptosis in oxidized low-density lipoprotein-induced preeclampsia. Front Mol Biosci. 2021;8:709751. EDN: CXGDJX doi: 10.3389/fmolb.2021.709751
- Zhu HL, Shi XT, Xu XF, et al. Environmental cadmium exposure induces fetal growth restriction via triggering PERK-regulated mitophagy in placental trophoblasts. Environ Int. 2021;147:106319. EDN: LBYQMZ doi: 10.1016/j.envint.2020.106319
- Curtis S, Jones CJ, Garrod A, et al. Identification of autophagic vacuoles and regulators of autophagy in villous trophoblast from normal term pregnancies and in fetal growth restriction. J Matern Fetal Neonatal Med. 2013;26(4):339–346. doi: 10.3109/14767058.2012.733764
- Huang X, Han X, Huang Z, et al. Maternal pentachlorophenol exposure induces developmental toxicity mediated by autophagy on pregnancy mice. Ecotoxicol Environ Saf. 2019;169:829–836. doi: 10.1016/j.ecoenv.2018.11.073
- Rosenfeld CS. The placenta-brain-axis. J Neurosci Res. 2021;99(1):271–283. EDN: SWFWTC doi: 10.1002/jnr.24603
- Zhou P, Wang J, Wang J, et al. When autophagy meets placenta development and pregnancy complications. Front Cell Dev Biol. 2024;12:1327167. EDN: CWYSIK doi: 10.3389/fcell.2024.1327167
- Nakashima A, Tsuda S, Kusabiraki T, et al. Current understanding of autophagy in pregnancy. Int J Mol Sci. 2019;20(9):2342. doi: 10.3390/ijms20092342
- de Bree A, van der Put NM, Mennen LI, et al. Prevalences of hyperhomocysteinemia, unfavorable cholesterol profile and hypertension in European populations. Eur J Clin Nutr. 2005;59(4):480–488. doi: 10.1038/sj.ejcn.1602097
- Dai C, Fei Y, Li J, et al. A novel review of homocysteine and pregnancy complications. Biomed Res Int. 2021;2021:6652231. EDN: FPQEIQ doi: 10.1155/2021/6652231
- Memon SI, Acharya NS, Acharya S, et al. Maternal hyperhomocysteinemia as a predictor of placenta-mediated pregnancy complications: a two-year novel study. Cureus. 2023;15(4):e37461. EDN: KNPNMI doi: 10.7759/cureus.37461
- D’Souza SW, Glazier JD. Homocysteine metabolism in pregnancy and developmental impacts. Front Cell Dev Biol. 2022;10:802285. EDN: KFSERA doi: 10.3389/fcell.2022.802285
- Li D, Pickell L, Liu Y, et al. Maternal methylenetetrahydrofolate reductase deficiency and low dietary folate lead to adverse reproductive outcomes and congenital heart defects in mice. Am J Clin Nutr. 2005;82(1):188–195. doi: 10.1093/ajcn.82.1.188
- Tripathi M, Zhang CW, Singh BK, et al. Hyperhomocysteinemia causes ER stress and impaired autophagy that is reversed by vitamin B supplementation. Cell Death Dis. 2016;7(12):e2513–e2513. EDN: CJMMIG doi: 10.1038/cddis.2016.374
- Witucki Ł, Jakubowski H. Homocysteine metabolites inhibit autophagy, elevate amyloid beta, and induce neuropathy by impairing Phf8/H4K20me1-dependent epigenetic regulation of mTOR in cystathionine β-synthase-deficient mice. J Inherit Metab Dis. 2023;46(6):1114–1130. EDN: CKAZXT doi: 10.1002/jimd.12661
- Li T, Dong G, Kang Y, et al. Increased homocysteine regulated by androgen activates autophagy by suppressing the mammalian target of rapamycin pathway in the granulosa cells of polycystic ovary syndrome mice. Bioengineered. 2022;13(4):10875–10888. EDN: YMBHKS doi: 10.1080/21655979.2022.2066608
- Yin X, Gao R, Geng Y, et al. Autophagy regulates abnormal placentation induced by folate deficiency in mice. Mol Hum Reprod. 2019;25(6):305–319. doi: 10.1093/molehr/gaz022
- Khayati K, Antikainen H, Bonder EM, et al. The amino acid metabolite homocysteine activates mTORC1 to inhibit autophagy and form abnormal proteins in human neurons and mice. FASEB J. 2017;31(2):598–609. doi: 10.1096/fj.201600915R
- Arutjunyan AV, Milyutina YP, Shcherbitskaia AD, et al. Neurotrophins of the fetal brain and placenta in prenatal hyperhomocysteinemia. Biochemistry (Mosc). 2020;85(2):213–223. EDN: UFYHHA doi: 10.1134/s000629792002008x
- Kielkopf CL, Bauer W, Urbatsch IL. Bradford assay for determining protein concentration. Cold Spring Harb Protoc. 2020;2020(4):102269. EDN: SILLVS doi: 10.1101/pdb.prot102269
- Bass JJ, Wilkinson DJ, Rankin D, et al. An overview of technical considerations for Western blotting applications to physiological research. Scand J Med Sci Sports. 2017;27(1):4–25. EDN: YVZVDP doi: 10.1111/sms.12702
- Vasilev DS, Shcherbitskaia AD, Tumanova NL, et al. Maternal hyperhomocysteinemia disturbs the mechanisms of embryonic brain development and its maturation in early postnatal ontogenesis. Cells. 2023;12(1):189. EDN: SVIIJO doi: 10.3390/cells12010189
- Furukawa S, Tsuji N, Sugiyama A. Morphology and physiology of rat placenta for toxicological evaluation. J Toxicol Pathol. 2019;32(1):1–17. doi: 10.1293/tox.2018-0042
- Furukawa S, Hayashi S, Usuda K, et al. Toxicological pathology in the rat placenta. J Toxicol Pathol. 2011;24(2):95–111. doi: 10.1293/tox.24.95
- Peel S,Bulmer D. Proliferation and differentiation of trophoblast in the establishment of the rat chorio-allantoic placenta. J Anat. 1977;124(Pt 3):675–687.
- Rosario GX, Konno T, Soares MJ. Maternal hypoxia activates endovascular trophoblast cell invasion. Dev Biol. 2008;314(2):362–375. EDN: MKSRQL doi: 10.1016/j.ydbio.2007.12.007
- Wislocki GB, Dempsey EW. Electron microscopy of the placenta of the rat. Anat Rec. 1955;123(1):33–63. doi: 10.1002/ar.1091230104
- Padmanabhan R, Al-Menhali NM, Ahmed I, et al. Histological, histochemical and electron microscopic changes of the placenta induced by maternal exposure to hyperthermia in the rat. Int J Hyperthermia. 2005;21(1):29–44. doi: 10.1080/02656730410001716614
- Arutjunyan AV, Kerkeshko GO, Milyutina YP, et al. Imbalance of angiogenic and growth factors in placenta in maternal hyperhomocysteinemia. Biochemistry (Mosc). 2023;88(2):262–279. EDN: OCGJCE doi: 10.1134/S0006297923020098
- Milyutina YP, Kerkeshko GO, Vasilev DS, et al. Placental transport of amino acids in rats with methionine-induced hyperhomocysteinemia. Biochemistry (Mosc). 2024;89(10):1711–1726. EDN: MTPVHH doi: 10.1134/s0006297924100055
- Yue Z, Jin S, Yang C, et al. Beclin 1, an autophagy gene essential for early embryonic development, is a haploinsufficient tumor suppressor. Proc Natl Acad Sci USA. 2003;100(25):15077–15082. doi: 10.1073/pnas.2436255100
- Reemst K, Noctor SC, Lucassen PJ, et al. The indispensable roles of microglia and astrocytes during brain development. Front Hum Neurosci. 2016;10:566. EDN: XUUAOH doi: 10.3389/fnhum.2016.00566
- Sun T, Hevner RF. Growth and folding of the mammalian cerebral cortex: from molecules to malformations. Nat Rev Neurosci. 2014;15(4):217–232. doi: 10.1038/nrn3707
- Zając A, Maciejczyk A, Sumorek-Wiadro J, et al. The role of Bcl-2 and Beclin-1 complex in “switching” between apoptosis and autophagy in human glioma cells upon LY294002 and sorafenib treatment. Cells. 2023;12(23):2670. EDN: GGQJAI doi: 10.3390/cells12232670
- Zhou F, Yang Y, Xing D. Bcl-2 and Bcl-xL play important roles in the crosstalk between autophagy and apoptosis. FEBS J. 2011;278(3):403–413. EDN: YBYSGB doi: 10.1111/j.1742-4658.2010.07965.x
- Maday S, Holzbaur EL. Compartment-specific regulation of autophagy in primary neurons. J Neurosci. 2016;36(22):5933–5945. doi: 10.1523/JNEUROSCI.4401-15.2016
- Mizushima N, Yamamoto A, Matsui M, et al. In vivo analysis of autophagy in response to nutrient starvation using transgenic mice expressing a fluorescent autophagosome marker. Mol Biol Cell. 2004;15(3):1101–1111. EDN: XOBSTT doi: 10.1091/mbc.e03-09-0704
- Pellacani C, Costa LG. Role of autophagy in environmental neurotoxicity. Environ Pollut. 2018;235:791–805. EDN: YGHRFR doi: 10.1016/j.envpol.2017.12.102
- Luo J. Autophagy and ethanol neurotoxicity. Autophagy. 2014;10(12):2099–2108. EDN: WRACVH doi: 10.4161/15548627.2014.981916
- Behura SK, Dhakal P, Kelleher AM, et al. The brain-placental axis: therapeutic and pharmacological relevancy to pregnancy. Pharmacol Res. 2019;149:104468. doi: 10.1016/j.phrs.2019.104468
- Efeyan A, Zoncu R, Chang S, et al. Regulation of mTORC1 by the Rag GTPases is necessary for neonatal autophagy and survival. Nature. 2013;493(7434):679–683. doi: 10.1038/nature11745
- Shcherbitskaia AD, Vasilev DS, Milyutina YP, et al. Prenatal hyperhomocysteinemia induces glial activation and alters neuroinflammatory marker expression in infant rat hippocampus. Cells. 2021;10(6):1537. EDN: GYLTBQ doi: 10.3390/cells10061536
- Shcherbitskaia AD, Vasilev DS, Milyutina YP, et al. Maternal hyperhomocysteinemia induces neuroinflammation and neuronal death in the rat offspring cortex. Neurotox Res. 2020;38(2):408–420. EDN: YCFCIY doi: 10.1007/s12640-020-00233-w
Supplementary files
