On dissection of the uterine wall during laparoscopic myomectomy

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Laparoscopic myomectomy is becoming the leading method of surgical treatment of uterine fibroids while preserving reproductive and menstrual functions. Increasingly, ultrasound energy is used to dissect the myometrium. Meanwhile, the mode and direction of the ultrasound energy supply to minimize damage to the underlying tissues have not been specified.

AIM: The aim of this study was to perform a comparative analysis of the myometrium and the fibroid pseudocapsule in the projection of the myoma nodule after dissection using ultrasound energy with different initial characteristics of the surgical instrument.

MATERIALS AND METHODS: For comparison, we selected two instruments with a longitudinal ultrasound energy supply with an output frequency of 80 MHz ... 2.5 GHz and 47 kHz at intermittent operating mode of 5/10 sec and one torsion instrument with a transverse ultrasound energy supply with an output frequency of 36 kHz at intermittent operating mode of 3/30 sec.

RESULTS: Our study has shown that the smallest zone of irreversible changes is formed when using ultrasound energy with an output frequency of 36 kHz at intermittent operating mode of 3/30 sec with its transverse feed at 90 degrees to the blade, and the largest zone of irreversible changes is formed when using ultrasound energy with an output frequency of 47 kHz at intermittent operating mode of 5/10 sec with its longitudinal feed.

CONCLUSIONS: Morphometric studies with an analysis of the depth of necrotic and necrobiotic changes in the myometrial tissue showed that from the standpoint of reproductive surgery, it is preferable to use USE with an output frequency of 36 kHz at intermittent operating mode of 3/30 sec with its transverse feed.

Full Text

Restricted Access

About the authors

Andrey N. Plekhanov

Academician I.P. Pavlov First Saint Petersburg State Medical University; Saint Petersburg Clinical Hospital of the Russian Academy of Sciences; Academy of Medical Education named after F.I. Inozemtsev

Email: a_plekhanov@mail.ru
ORCID iD: 0000-0002-5876-6119
SPIN-code: 1132-4360

MD, Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg

Vitaly F. Bezhenar

Academician I.P. Pavlov First Saint Petersburg State Medical University

Email: bez-vitaly@yandex.ru
ORCID iD: 0000-0002-7807-4929
SPIN-code: 8626-7555
Scopus Author ID: 57191963583
ResearcherId: R-7055-2017

MD, Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg

Yulia S. Shishkina

Medi Prof Ltd.

Author for correspondence.
Email: shyulia07@mail.ru
ORCID iD: 0000-0001-9502-298X

MD

Russian Federation, Saint Petersburg

Viktor A. Linde

Academician I.P. Pavlov First Saint Petersburg State Medical University

Email: vik-linde@yandex.ru
ORCID iD: 0000-0002-6032-1936
Scopus Author ID: 56825712100

MD, Dr. Sci. (Med.), Professor

Russian Federation, Saint Petersburg

References

  1. Bezhenar VF, Komlichenko EV, Yarmolinskaya MI, et al. Innovative approaches to reproductive function recovery in patients with uterine myoma. Obstetrics and Gynecology. 2016;(1):80−87. (In Russ.). doi: 10.18565/aig.2016.1.80-87
  2. D’Silva EC, Muda AM, Safiee AI, Ghazali WAHW. Five years later: a review of laparoscopic myomectomy versus open Myomectomy at Putrajaya hospital. Gynecol Minim Invasive Ther. 2018;7(4):161−166. doi: 10.4103/GMIT.GMIT_38_18
  3. Bashirov EV, Kutcenko II, Krutova VA, Babkina AV. Remodeling uterine scar after miomectomy and the role of dopplerometry in its assessment. Kubanskij nauchnyj medicinskij vestnik. 2017;24(4);22−26. (In Russ.). doi: 10.25207/1608-6228-2017-24-4-22-26
  4. Davydov AI, Pashkov VM, Shakhlamova MN, et al. Conservative myomectomy: unsolved problems and a new view of pre-operative preparation of patients. Voprosy Ginekologii, Akusherstva i Perinatologii. 2015;14(1):31−47. (In Russ.)
  5. Gluhov EJu. Ispol’zovanie sovremennyh jenergij pri laparoskopicheskoj i otkrytoj miomjektomii. Medicinskaja nauka i obrazovanie Urala. 2011;(1):89−93. (In Russ.)
  6. Kupatadze DD, Safronova MM, Il’inskaya YeV. Electronmicroscopic examination of m yometrium scar after use of mono- and bipolar c auters. Pediatrician (St Petersburg). 2017;8(3):107−110. (In Russ.). doi: 10.17816/PED83107-110. (In Russ.)
  7. Claeys J, Hellendoorn I, Hamerlynck T, et al. The risk of uterine rupture after myomectomy: a systematic review of the literature and meta-analysis. Gynecol Surg. 2014;11(3):197–206. doi: 10.1007/s10397-014-0842-8
  8. Kupatadze DD, Safronova MM, Volkov NN. Miometrij posle primenenija jelektrokoaguljacii i dissekcii pri konservativnoj miomjektomii. Vestnik SPbGU. Serija 11. Medicina. 2013;(4):111−117. (In Russ.)
  9. Bezhenar VF, Tsypurdeeva AA, Dolinskiy AK, et al. The experience of a standardized technique of laparoscopic myomectomy. Journal of Obstetrics and Women’s Diseases. 2012:(4):23−32. (In Russ.)
  10. Smith R, Pasic R. The role of vessel sealing technologies in laparoscopic surgery. Surg Technol Int. 2008;17:208−212.
  11. Fedorov IV. Practical use of energy in surgery and its complications. Povolzhskij onkologicheskij vestnik. 2013;(4):56−65. (In Russ.)

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. An instrument with longitudinal ultrasound supply of energy

Download (78KB)
3. Fig. 2. Combined ultrasound and bipolar instrument with the longitudinal supply of ultrasound energy

Download (68KB)
4. Fig. 3. Torsional ultrasound instrument with the transverse supply of ultrasound energy

Download (73KB)
5. Fig. 4. Results of morphometry at a magnification of 10: 1: defect width; 2: defect depth; 3: a fragment of the defect wall, selected for stage 2 of the study. Hematoxylin and eosin staining

Download (86KB)
6. Fig. 5. Results of morphometry at a magnification of 400: 1: necrosis area; 2: area of severe necrobiotic changes; 3: area of edema; 4: normal myometrial structure (for comparison). Hematoxylin and eosin staining

Download (324KB)
7. Fig. 6. The depth of the area of irreversible changes. 1: cross feed of 36 kHz (p < 0.05) compared with No. 2 and 3; 2: longitudinal feed of 80 MHz to 2.5 GHz; and 3: longitudinal feed 47 kHz

Download (59KB)

Copyright (c) 2021 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies