Placental ultrasound and pathomorphological features of fetal growth disorders in pregnant women with pregestational diabetes mellitus
- Authors: Shelaeva E.V.1, Kopteeva E.V.1, Alekseenkova E.N.1, Nagorneva S.V.1, Tral T.G.1, Tolibova G.K.1, Kapustin R.V.1, Kogan I.Y.1
-
Affiliations:
- The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
- Issue: Vol 74, No 3 (2025)
- Pages: 76-90
- Section: Original study articles
- Submitted: 08.02.2025
- Accepted: 17.04.2025
- Published: 23.07.2025
- URL: https://journals.eco-vector.com/jowd/article/view/654079
- DOI: https://doi.org/10.17816/JOWD654079
- EDN: https://elibrary.ru/FMCMIV
- ID: 654079
Cite item
Abstract
BACKGROUND: Growth disturbances are common in pregnancies complicated by pregestational diabetes mellitus. Identifying the relationship between the structural and functional characteristics of the placenta and abnormal fetal growth is important for understanding its formation and the possibility of its prediction.
AIM: The aim of this study was to conduct a comparative analysis of the postnatal morphological and prenatal ultrasound features of the structure of placentas in cases of fetal growth disorders in pregnant women with pregestational diabetes mellitus.
METHODS: In this retrospective single-center cohort study, we analyzed the results of the morphological studies of 1200 placentas, including those with fetal growth disorders in pregnant women with pregestational diabetes mellitus. Ultrasound prenatal fetometry, placentometry and Doppler measurements were used in this study. The studied placentas were weighed, with their size and cotyledonous structure assessed. Placental histopathological parameters were diagnosed using standardized criteria. Statistical analysis was carried out using SPSS Statistics version 23.0.
RESULTS: The comparison groups included patients with pregestational diabetes mellitus types 1 and 2 with the absence (n = 394) or the presence of various fetal growth disturbances such as fetal growth restriction (n = 109), small (n = 118) and large (n = 352) for gestational age fetuses. The control group (n = 157) consisted of pregnant women with normal fetal growth rates and normal carbohydrate metabolism. In the placentas from pregnant women with pregestational diabetes mellitus, regardless of the presence of fetal growth disorders, we identified a number of distinctive features compared to patients in the control group. These were abnormal size, inconsistency of the structure of the placenta and the gestational age with a predominance of dissociated villous maturation, the presence of circulatory disorders of varying degrees, the presence of inflammatory changes in the placenta, deposition of calcium salts, and the development of chronic placental insufficiency and placental infarction. Moreover, in pregestational diabetes mellitus, the placentas of fetuses with macrosomic and normal growth often demonstrated similar features of the morphological structure. In intrauterine growth restriction, signs of pathological immaturity, premature and abnormal maturation of the villi prevailed in the structure of the placenta, with sclerosis of the villous stroma, placental infarctions, and circulatory disorders being more common. We demonstrated an association of grade II and III hemodynamic disorders with the features of maturation and structure of the villi and the presence of placental insufficiency. Critical blood flow disorders in the umbilical artery were associated with severe circulatory disorders in the placentas.
CONCLUSION: In analyzing the morphofunctional and ultrasound characteristics of the placenta in cases of fetal growth disorders in pregestational diabetes mellitus, we found changes associated with both impaired carbohydrate metabolism and the influence of concomitant conditions. Some features of placental morphology in pregestational diabetes mellitus appeared to be morphofunctional adaptations. A relationship was found between fetoplacental hemodynamics Doppler disturbances and the histological structure of the placentas.
Full Text

About the authors
Elizaveta V. Shelaeva
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Author for correspondence.
Email: eshelaeva@yandex.ru
ORCID iD: 0000-0002-9608-467X
SPIN-code: 7440-0555
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgEkaterina V. Kopteeva
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: ekaterina_kopteeva@bk.ru
ORCID iD: 0000-0002-9328-8909
SPIN-code: 9421-6407
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgElena N. Alekseenkova
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: ealekseva@gmail.com
ORCID iD: 0000-0002-0642-7924
SPIN-code: 3976-2540
MD
Russian Federation, Saint PetersburgStanislava V. Nagorneva
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: stanislava_n@bk.ru
ORCID iD: 0000-0003-0402-5304
SPIN-code: 5109-7613
MD, Cand. Sci. (Medicine)
Russian Federation, Saint PetersburgTatiana G. Tral
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: ttg.tral@yandex.ru
ORCID iD: 0000-0001-8948-4811
SPIN-code: 1244-9631
MD, Dr. Sci. (Medicine)
Russian Federation, Saint PetersburgGulrukhsor Kh. Tolibova
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: gulyatolibova@mail.ru
ORCID iD: 0000-0002-6216-6220
SPIN-code: 7544-4825
MD, Dr. Sci. (Medicine)
Russian Federation, Saint PetersburgRoman V. Kapustin
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: kapustin.roman@gmail.com
ORCID iD: 0000-0002-2783-3032
SPIN-code: 7300-6260
MD, Dr. Sci. (Medicine)
Russian Federation, Saint PetersburgIgor Yu. Kogan
The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900
SPIN-code: 6572-6450
MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences
Russian Federation, Saint PetersburgReferences
- Maltepe E, Fisher SJ. Placenta: the forgotten organ. Annu Rev Cell Dev Biol. 2015;31:523–552. EDN: VYEYAB doi: 10.1146/annurev-cellbio-100814-125620
- Tossetta G. Special issue “Physiology and pathophysiology of placenta 2.0”. Int J Mol Sci. 2024;25(9):4586. EDN: FACGRW doi: 10.3390/ijms25094586
- Staud F, Karahoda R. Trophoblast: the central unit of fetal growth, protection and programming. Int J Biochem Cell Biol. 2018;105:35–40. doi: 10.1016/j.biocel.2018.09.016
- Fowden AL, Camm EJ, Sferruzzi-Perri AN. Effects of maternal obesity on placental phenotype. Curr Vasc Pharmacol. 2021;19(2):113–131. EDN: NBIBPG doi: 10.2174/1570161118666200513115316
- Wang H, Li N, Chivese T, Werfalli M, et al.; IDF Diabetes Atlas Committee Hyperglycaemia in Pregnancy Special Interest Group. IDF diabetes atlas: estimation of global and regional gestational diabetes mellitus prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s criteria. Diabetes Res Clin Pract. 2022;183:109050. EDN: EFSTRM doi: 10.1016/j.diabres.2021.109050
- Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50. doi: 10.1016/j.diabres.2017.03.024
- Calvo MJ, Parra H, Santeliz R, et al. The placental role in gestational diabetes mellitus: a molecular perspective. touchREV Endocrinol. 2024;20(1):10–18. EDN: ZGSOFG doi: 10.17925/EE.2024.20.1.5
- Huynh J, Dawson D, Roberts D, et al. A systematic review of placental pathology in maternal diabetes mellitus. Placenta. 2015;36(2):101–114. EDN: URLNAN doi: 10.1016/j.placenta.2014.11.021
- Tral TG, Tolibova GKh, Musina EV, et al. Molecular and morphological peculiarities of chronic placental insufficiency formation caused by different types of diabetes mellitus. Diabetes mellitus. 2020;23(2):185–191. EDN: WMVKAO doi: 10.14341/DM10228
- Kapustin RV, Kopteyeva EV, Tral TG, et al. Placental morphology in different types of diabetes mellitus. Journal of Obstetrics and Women’s Diseases. 2021;70(2):13–26. EDN: FBLSJP doi: 10.17816/JOWD57149
- Fetal Growth Restriction: ACOG Practice Bulletin, Number 227. Obstet Gynecol. 2021;137(2):e16–e28. EDN: KIVYYU doi: 10.1097/AOG.0000000000004251
- Pretscher J, Kehl S, Stelzl P, et al. Influence of sonographic fetal weight estimation inaccuracies in macrosomia on perinatal outcome. Ultraschall Med. 2022;43(5):e56–e64. EDN: QUXAYJ doi: 10.1055/a-1205-0191
- Gordijn SJ, Beune IM, Thilaganathan B, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48(3):333–339. doi: 10.1002/uog.15884
- Lees CC, Stampalija T, Baschat AA, et al. ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet Gynecol. 2020;56(2):298–312. EDN: VEEENR doi: 10.1002/uog.22134
- Russian Society of Obstetricians and Gynecologists. Insufficient fetal growth requiring maternal medical care (fetal growth restriction). Ministry of Health of the Russian Federation; 2022. (In Russ.) [cited 2025 May 22]. Available from: https://roagportal.ru/recommendations_obstetrics#pdfcontent_17
- Damhuis SE, Ganzevoort W, Gordijn SJ. Abnormal fetal growth: small for gestational age, fetal growth restriction, large for gestational age: definitions and epidemiology. Obstet Gynecol Clin North Am. 2021;48(2):267–279. EDN: INYJIU doi: 10.1016/j.ogc.2021.02.002.
- Papageorghiou AT, Kennedy SH, Salomon LJ, et al. The INTERGROWTH-21st fetal growth standards: toward the global integration of pregnancy and pediatric care. Am J Obstet Gynecol. 2018; 218(2S):S630–S640. doi: 10.1016/j.ajog.2018.01.011
- Khong TY, Mooney EE, Ariel I, et al. Sampling and definitions of placental lesions: amsterdam placental workshop group consensus statement. Arch Pathol Lab Med. 2016;140(7):698–713. doi: 10.5858/arpa.2015-0225-CC
- Glukhovets BI, Glukhovets NG. Pathology of the placenta. Saint Petersburg: Grail; 2002. 448 p. (In Russ.)
- Schiffer V, van Haren A, De Cubber L, et al. Ultrasound evaluation of the placenta in healthy and placental syndrome pregnancies: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2021;262:45–56. EDN: GPRXKI doi: 10.1016/j.ejogrb.2021.04.042
- Redline RW, Boyd TK, Roberts DJ, editors. Placental and gestational pathology. Cambridge University Press; 2018. doi: 10.1017/9781316848616
- Strebeck R, Jensen B, Magann EF. Thick placenta in pregnancy: a review. Obstet Gynecol Surv. 2022;77(9):547–557. EDN: BXYXVN doi: 10.1097/OGX.000000000000105
- Sun X, Shen J, Wang L. Insights into the role of placenta thickness as a predictive marker of perinatal outcome. J Int Med Res. 2021;49(2):300060521990969. EDN: HRYAGG doi: 10.1177/0300060521990969
- Wan Masliza WD, Bajuri MY, Hassan MR, et al. Sonographically abnormal placenta: an association with an increased risk poor pregnancy outcomes. Clin Ter. 2017;168(5):e283–e289. doi: 10.7417/T.2017.2021
- Sharami SH, Milani F, Fallah Arzpeyma S, et al. The relationship between placental thickness and gestational age in pregnant women: a cross-sectional study. Health Sci Rep. 2023;6(5):e1228. doi: 10.1002/hsr2.1228
- Lee AJ, Bethune M, Hiscock RJ. Placental thickness in the second trimester: a pilot study to determine the normal range. J Ultrasound Med. 2012;31:213–218. doi: 10.7863/jum.2012.31.2.213
- Berceanu C, Tetileanu AV, Ofiţeru AM, et al. Morphological and ultrasound findings in the placenta of diabetic pregnancy. Rom J Morphol Embryol. 2018;59(1):175–186.
- Pásztor N, Sikovanyecz J, Keresztúri A, et al. Evaluation of the relation between placental weight and placental weight to foetal weight ratio and the causes of stillbirth: a retrospective comparative study. J Obstet Gynaecol. 2018;38(1):74–80. doi: 10.1080/01443615.2017.1349084
- Hayward CE, Lean S, Sibley CP, et al. Placental adaptation: what can we learn from birthweight: placental weight ratio? Front Physiol. 2016;7:28. doi: 10.3389/fphys.2016.00028
- Gloria-Bottini F, Neri A, Coppeta L, et al. Correlation between birth weight and placental weight in healthy and diabetic puerperae. Taiwan J Obstet Gynecol. 2016;55(5):697–699. doi: 10.1016/j.tjog.2015.03.013
- Carrasco-Wong I, Moller A, Giachini FR, et al. Placental structure in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis. 2020;1866(2):165535. EDN: XPXHTX doi: 10.1016/j.bbadis.2019.165535
- Torres-Torres J, Monroy-Muñoz IE, Perez-Duran J, et al. Cellular and molecular pathophysiology of gestational diabetes. Int J Mol Sci. 2024;25(21):11641. doi: 10.3390/ijms252111641
- Dall’Asta A, Melito C, Morganelli G, et al. Determinants of placental insufficiency in fetal growth restriction. Ultrasound Obstet Gynecol. 2023;61(2):152–157. EDN: UDDDGR doi: 10.1002/uog.26111
- Huynh J, Yamada J, Beauharnais C, et al. Type 1, type 2 and gestational diabetes mellitus differentially impact placental pathologic characteristics of uteroplacental malperfusion. Placenta. 2015;36(10):1161–1166. EDN: VFAGZH doi: 10.1016/j.placenta.2015.08.004
- Pietryga M, Biczysko W, Wender-Ozegowska E, et al. Ultrastructural examination of the placenta in pregnancy complicated by diabetes mellitus. Ginekol Pol. 2004;75(2):111–118. (In Polish)
- Sun C, Groom KM, Oyston C, et al. The placenta in fetal growth restriction: What is going wrong? Placenta. 2020;96:10–18. EDN: JKXJYK doi: 10.1016/j.placenta.2020.05.003
- Fasoulakis Z, Koutras A, Antsaklis P, et al. Intrauterine growth restriction due to gestational diabetes: from pathophysiology to diagnosis and management. Medicina (Kaunas). 2023;59(6):1139. EDN: GJHRZX doi: 10.3390/medicina59061139
- Dumolt JH, Powell TL, Jansson T. Placental function and the development of fetal overgrowth and fetal growth restriction. Obstet Gynecol Clin North Am. 2021;48(2):247–266. EDN: XEVUUH doi: 10.1016/j.ogc.2021.02.001
- Starikov R, Has P, Wu R, et al. Small-for-gestational age placentas associate with an increased risk of adverse outcomes in pregnancies complicated by either type I or type II pre-gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2022;35(9):1677–1682. EDN: JREGNU doi: 10.1080/14767058.2020.1767572
- Aldahmash WM, Alwasel SH, Aljerian K. Gestational diabetes mellitus induces placental vasculopathies. Environ Sci Pollut Res Int. 2022;29(13):19860–19868. EDN: GYZYIN doi: 10.1007/s11356-021-17267-y
- Vafaei H, Karimi Z, Akbarzadeh-Jahromi M, et al. Association of placental chorangiosis with pregnancy complication and prenatal outcome: a case-control study. BMC Pregnancy Childbirth. 2021;21(1):99. EDN: SGGWJZ doi: 10.1186/s12884-021-03576-0
- Stanek J. Placental recent/on-going foetal vascular malperfusion with endothelial fragmentation is diagnostically equivalent to established distal villous lesions of foetal vascular malperfusion. Pol J Pathol. 2022;73(3):198–207. EDN: XERAXG doi: 10.5114/pjp.2022.124487
- Rossi R, Scillitani G, Vimercati A, et al. Diabetic placenta: ultrastructure and morphometry of the term villi. Anal Quant Cytopathol Histpathol. 2012;34(5):239–247. EDN: RKRULJ
- Ehlers E, Talton OO, Schust DJ, et al. Placental structural abnormalities in gestational diabetes and when they develop: a scoping review. Placenta. 2021;116:58–66. EDN: CANQOU doi: 10.1016/j.placenta.2021.04.005
- Thunbo MØ, Sinding M, Bogaard P, et al. Postpartum placental CT angiography in normal pregnancies and in those complicated by diabetes mellitus. Placenta. 2018;69:20–25. doi: 10.1016/j.placenta.2018.06.309
- Liang X, Zhang J, Wang Y, et al. Comparative study of microvascular structural changes in the gestational diabetic placenta. Diab Vasc Dis Res. 2023;20(3):14791641231173627. EDN: ENEDBJ doi: 10.1177/14791641231173627
- Jaiman S, Romero R, Pacora P, et al. Disorders of placental villous maturation in fetal death. J Perinat Med. 2020. EDN: EPTYCL doi: 10.1515/jpm-2020-0030
- Higgins M, Felle P, Mooney EE, et al. Stereology of the placenta in type 1 and type 2 diabetes. Placenta. 2011;32(8):564–569. doi: 10.1016/j.placenta.2011.04.015
- Augustine G, Pulikkathodi M, SR, TK J. A study of placental histological changes in gestational diabetes mellitus on account of fetal hypoxia. Int J Med Sci Public Health. 2016;5(12):2457–2460. doi: 10.5455/ijmsph.2016.29042016494
- Memon S, Goswami P, Lata H. Gross and histological alteration in the placenta of mothers suffering from gestational diabetes. J Liaquat Univ Med Hea. Sci. 2015;14(1):16–20.
- Ohmaru-Nakanishi T, Asanoma K, Fujikawa M, et al. Fibrosis in preeclamptic placentas is associated with stromal fibroblasts activated by the transforming growth factor-β1 signaling pathway. Am J Pathol. 2018;188(3):683–695. EDN: YENLPN doi: 10.1016/j.ajpath.2017.11.008
- Verma R, Mishra SK, Jagat M. Cellular changes in the placenta in pregnancies complicated with diabetes. Int. J Morphol. 2010;28(1):259–264. doi: 10.4067/S0717-95022010000100038
- Mirza FG, Ghulmiyyah LM, Tamim H, et al. To ignore or not to ignore placental calcifications on prenatal ultrasound: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2018;31(6):797–804. doi: 10.1080/14767058.2017.1295443
- Chen KH, Chen LR, Lee YH. The role of preterm placental calcification in high-risk pregnancy as a predictor of poor uteroplacental blood flow and adverse pregnancy outcome. Ultrasound Med Biol. 2012;38(6):1011–1018. EDN: PINKXF doi: 10.1016/j.ultrasmedbio.2012.02.004
- Moran M, Higgins M, Zombori G, et al. Computerized assessment of placental calcification post-ultrasound: a novel software tool. Ultrasound Obstet Gynecol. 2013;41(5):545–549. doi: 10.1002/uog.12278
- Lei B, Yao Y, Chen S, et al. Discriminative learning for automatic staging of placental maturity via multi-layer fisher vector. Sci Rep. 2015;5:12818. doi: 10.1038/srep12818
- Paiker M, Khan K, Mishra D, et al. Morphological, morphometric, and histological evaluation of the placenta in cases of intrauterine fetal death. Cureus. 2024;16(6):e62871. doi: 10.7759/cureus.62871
- Goldstein JA, Nateghi R, Irmakci I, et al. Machine learning classification of placental villous infarction, perivillous fibrin deposition, and intervillous thrombus. Placenta. 2023;135:43–50. EDN: BLCXHC doi: 10.1016/j.placenta.2023.03.003
- Beauharnais CC, Roberts DJ, Wexler DJ. High rate of placental infarcts in type 2 compared with type 1 diabetes. J Clin Endocrinol Metab. 2012;97(7):E1160–E1164. doi: 10.1210/jc.2011-3326
- Aurioles-Garibay A, Hernandez-Andrade E, Romero R, et al. Prenatal diagnosis of a placental infarction hematoma associated with fetal growth restriction, preeclampsia and fetal death: clinicopathological correlation. Fetal Diagn Ther. 2014;36(2):154–161. doi: 10.1159/000357841
- Rais R, Starikov R, Robert W, et al. Clinicopathological correlation of large-for-gestational age placenta in pregnancies with pregestational diabetes. Pathol Res Pract. 2019;215(3):405–409. doi: 10.1016/j.prp.2018.12.029
- Istrate-Ofiţeru AM, Berceanu C, Berceanu S, et al. The influence of gestational diabetes mellitus (GDM) and gestational hypertension (GH) on placental morphological changes. Rom J Morphol Embryol. 2020;61(2):371–384. EDN: EKSKRZ doi: 10.47162/RJME.61.2.07
- Rahman A, Zhou Y-Q, Yee Y, et al. Ultrasound detection of altered placental vascular morphology based on hemodynamic pulse wave reflection. Am J Physiol Heart Circ Physiol. 2017;312:H1021e9. doi: 10.1152/ajpheart.00791.2016
- Mahalinga G, Rajasekhar KV, Venkateshwar Reddy M, et al. Morphometric Analysis of placenta and fetal doppler indices in normal and high-risk pregnancies. Cureus. 2024;16(6):e61663. EDN: UTFKNC doi: 10.7759/cureus.61663
- Audette MC, Kingdom JC. Screening for fetal growth restriction and placental insufficiency. Semin Fetal Neonatal Med. 2018;23(2):119–125. EDN: WAFXMP doi: 10.1016/j.siny.2017.11.004
- Altorjay ÁT, Surányi A, Nyári T, et al. Use of placental vascularization indices and uterine artery peak systolic velocity in early detection of pregnancies complicated by gestational diabetes, chronic or gestational hypertension, and preeclampsia at risk. Croat Med J. 2017;58(2):161–169. doi: 10.3325/cmj.2017.58.161
- Ashwal E, Ali-Gami J, Aviram A, et al. Contribution of second trimester sonographic placental morphology to uterine artery Doppler in the prediction of placenta-mediated pregnancy complications. J Clin Med. 2022;11(22):6759. EDN: HNGAIQ doi: 10.3390/jcm11226759
- Bochkareva LA, Nedosugova LV, Petunina NA, et al. Some mechanisms of inflammation development in type 2 diabetes mellitus. Diabetes mellitus. 2021;24(4):334–341. (In Russ.) doi: 10.14341/DM12746
- Pan X, Jin X, Wang J, et al. Placenta inflammation is closely associated with gestational diabetes mellitus. Am J Transl Res. 2021;13(5):4068–4079.
- Tauber Z, Burianova A, Koubova K, et al. The interplay of inflammation and placenta in maternal diabetes: insights into Hofbauer cell expression patterns. Front Immunol. 2024;15:1386528. doi: 10.3389/fimmu.2024.1386528
- Chittezhath M, Gunaseelan D, Zheng X, et al. Islet macrophages are associated with islet vascular remodeling and compensatory hyperinsulinemia during diabetes. Am J Physiol Metab. 2019;317(6):E1108–E1120. doi: 10.1152/ajpendo.00248.2019
- Musa E, Salazar-Petres E, Arowolo A, et al. Obesity and gestational diabetes independently and collectively induce specific effects on placental structure, inflammation and endocrine function in a cohort of South African women. J Physiol. 2023;601(7):1287–1306. doi: 10.1113/JP284139
Supplementary files
