Placental ultrasound and pathomorphological features of fetal growth disorders in pregnant women with pregestational diabetes mellitus

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Growth disturbances are common in pregnancies complicated by pregestational diabetes mellitus. Identifying the relationship between the structural and functional characteristics of the placenta and abnormal fetal growth is important for understanding its formation and the possibility of its prediction.

AIM: The aim of this study was to conduct a comparative analysis of the postnatal morphological and prenatal ultrasound features of the structure of placentas in cases of fetal growth disorders in pregnant women with pregestational diabetes mellitus.

METHODS: In this retrospective single-center cohort study, we analyzed the results of the morphological studies of 1200 placentas, including those with fetal growth disorders in pregnant women with pregestational diabetes mellitus. Ultrasound prenatal fetometry, placentometry and Doppler measurements were used in this study. The studied placentas were weighed, with their size and cotyledonous structure assessed. Placental histopathological parameters were diagnosed using standardized criteria. Statistical analysis was carried out using SPSS Statistics version 23.0.

RESULTS: The comparison groups included patients with pregestational diabetes mellitus types 1 and 2 with the absence (n = 394) or the presence of various fetal growth disturbances such as fetal growth restriction (n = 109), small (n = 118) and large (n = 352) for gestational age fetuses. The control group (n = 157) consisted of pregnant women with normal fetal growth rates and normal carbohydrate metabolism. In the placentas from pregnant women with pregestational diabetes mellitus, regardless of the presence of fetal growth disorders, we identified a number of distinctive features compared to patients in the control group. These were abnormal size, inconsistency of the structure of the placenta and the gestational age with a predominance of dissociated villous maturation, the presence of circulatory disorders of varying degrees, the presence of inflammatory changes in the placenta, deposition of calcium salts, and the development of chronic placental insufficiency and placental infarction. Moreover, in pregestational diabetes mellitus, the placentas of fetuses with macrosomic and normal growth often demonstrated similar features of the morphological structure. In intrauterine growth restriction, signs of pathological immaturity, premature and abnormal maturation of the villi prevailed in the structure of the placenta, with sclerosis of the villous stroma, placental infarctions, and circulatory disorders being more common. We demonstrated an association of grade II and III hemodynamic disorders with the features of maturation and structure of the villi and the presence of placental insufficiency. Critical blood flow disorders in the umbilical artery were associated with severe circulatory disorders in the placentas.

CONCLUSION: In analyzing the morphofunctional and ultrasound characteristics of the placenta in cases of fetal growth disorders in pregestational diabetes mellitus, we found changes associated with both impaired carbohydrate metabolism and the influence of concomitant conditions. Some features of placental morphology in pregestational diabetes mellitus appeared to be morphofunctional adaptations. A relationship was found between fetoplacental hemodynamics Doppler disturbances and the histological structure of the placentas.

Full Text

Restricted Access

About the authors

Elizaveta V. Shelaeva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: eshelaeva@yandex.ru
ORCID iD: 0000-0002-9608-467X
SPIN-code: 7440-0555

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Ekaterina V. Kopteeva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ekaterina_kopteeva@bk.ru
ORCID iD: 0000-0002-9328-8909
SPIN-code: 9421-6407

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Elena N. Alekseenkova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ealekseva@gmail.com
ORCID iD: 0000-0002-0642-7924
SPIN-code: 3976-2540

MD

Russian Federation, Saint Petersburg

Stanislava V. Nagorneva

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: stanislava_n@bk.ru
ORCID iD: 0000-0003-0402-5304
SPIN-code: 5109-7613

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Tatiana G. Tral

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ttg.tral@yandex.ru
ORCID iD: 0000-0001-8948-4811
SPIN-code: 1244-9631

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Gulrukhsor Kh. Tolibova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: gulyatolibova@mail.ru
ORCID iD: 0000-0002-6216-6220
SPIN-code: 7544-4825

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Roman V. Kapustin

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: kapustin.roman@gmail.com
ORCID iD: 0000-0002-2783-3032
SPIN-code: 7300-6260

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Igor Yu. Kogan

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: ikogan@mail.ru
ORCID iD: 0000-0002-7351-6900
SPIN-code: 6572-6450

MD, Dr. Sci. (Medicine), Professor, Corresponding Member of the Russian Academy of Sciences

Russian Federation, Saint Petersburg

References

  1. Maltepe E, Fisher SJ. Placenta: the forgotten organ. Annu Rev Cell Dev Biol. 2015;31:523–552. EDN: VYEYAB doi: 10.1146/annurev-cellbio-100814-125620
  2. Tossetta G. Special issue “Physiology and pathophysiology of placenta 2.0”. Int J Mol Sci. 2024;25(9):4586. EDN: FACGRW doi: 10.3390/ijms25094586
  3. Staud F, Karahoda R. Trophoblast: the central unit of fetal growth, protection and programming. Int J Biochem Cell Biol. 2018;105:35–40. doi: 10.1016/j.biocel.2018.09.016
  4. Fowden AL, Camm EJ, Sferruzzi-Perri AN. Effects of maternal obesity on placental phenotype. Curr Vasc Pharmacol. 2021;19(2):113–131. EDN: NBIBPG doi: 10.2174/1570161118666200513115316
  5. Wang H, Li N, Chivese T, Werfalli M, et al.; IDF Diabetes Atlas Committee Hyperglycaemia in Pregnancy Special Interest Group. IDF diabetes atlas: estimation of global and regional gestational diabetes mellitus prevalence for 2021 by International Association of Diabetes in Pregnancy Study Group’s criteria. Diabetes Res Clin Pract. 2022;183:109050. EDN: EFSTRM doi: 10.1016/j.diabres.2021.109050
  6. Ogurtsova K, da Rocha Fernandes JD, Huang Y, et al. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50. doi: 10.1016/j.diabres.2017.03.024
  7. Calvo MJ, Parra H, Santeliz R, et al. The placental role in gestational diabetes mellitus: a molecular perspective. touchREV Endocrinol. 2024;20(1):10–18. EDN: ZGSOFG doi: 10.17925/EE.2024.20.1.5
  8. Huynh J, Dawson D, Roberts D, et al. A systematic review of placental pathology in maternal diabetes mellitus. Placenta. 2015;36(2):101–114. EDN: URLNAN doi: 10.1016/j.placenta.2014.11.021
  9. Tral TG, Tolibova GKh, Musina EV, et al. Molecular and morphological peculiarities of chronic placental insufficiency formation caused by different types of diabetes mellitus. Diabetes mellitus. 2020;23(2):185–191. EDN: WMVKAO doi: 10.14341/DM10228
  10. Kapustin RV, Kopteyeva EV, Tral TG, et al. Placental morphology in different types of diabetes mellitus. Journal of Obstetrics and Women’s Diseases. 2021;70(2):13–26. EDN: FBLSJP doi: 10.17816/JOWD57149
  11. Fetal Growth Restriction: ACOG Practice Bulletin, Number 227. Obstet Gynecol. 2021;137(2):e16–e28. EDN: KIVYYU doi: 10.1097/AOG.0000000000004251
  12. Pretscher J, Kehl S, Stelzl P, et al. Influence of sonographic fetal weight estimation inaccuracies in macrosomia on perinatal outcome. Ultraschall Med. 2022;43(5):e56–e64. EDN: QUXAYJ doi: 10.1055/a-1205-0191
  13. Gordijn SJ, Beune IM, Thilaganathan B, et al. Consensus definition of fetal growth restriction: a Delphi procedure. Ultrasound Obstet Gynecol. 2016;48(3):333–339. doi: 10.1002/uog.15884
  14. Lees CC, Stampalija T, Baschat AA, et al. ISUOG Practice Guidelines: diagnosis and management of small-for-gestational-age fetus and fetal growth restriction. Ultrasound Obstet Gynecol. 2020;56(2):298–312. EDN: VEEENR doi: 10.1002/uog.22134
  15. Russian Society of Obstetricians and Gynecologists. Insufficient fetal growth requiring maternal medical care (fetal growth restriction). Ministry of Health of the Russian Federation; 2022. (In Russ.) [cited 2025 May 22]. Available from: https://roagportal.ru/recommendations_obstetrics#pdfcontent_17
  16. Damhuis SE, Ganzevoort W, Gordijn SJ. Abnormal fetal growth: small for gestational age, fetal growth restriction, large for gestational age: definitions and epidemiology. Obstet Gynecol Clin North Am. 2021;48(2):267–279. EDN: INYJIU doi: 10.1016/j.ogc.2021.02.002.
  17. Papageorghiou AT, Kennedy SH, Salomon LJ, et al. The INTERGROWTH-21st fetal growth standards: toward the global integration of pregnancy and pediatric care. Am J Obstet Gynecol. 2018; 218(2S):S630–S640. doi: 10.1016/j.ajog.2018.01.011
  18. Khong TY, Mooney EE, Ariel I, et al. Sampling and definitions of placental lesions: amsterdam placental workshop group consensus statement. Arch Pathol Lab Med. 2016;140(7):698–713. doi: 10.5858/arpa.2015-0225-CC
  19. Glukhovets BI, Glukhovets NG. Pathology of the placenta. Saint Petersburg: Grail; 2002. 448 p. (In Russ.)
  20. Schiffer V, van Haren A, De Cubber L, et al. Ultrasound evaluation of the placenta in healthy and placental syndrome pregnancies: a systematic review. Eur J Obstet Gynecol Reprod Biol. 2021;262:45–56. EDN: GPRXKI doi: 10.1016/j.ejogrb.2021.04.042
  21. Redline RW, Boyd TK, Roberts DJ, editors. Placental and gestational pathology. Cambridge University Press; 2018. doi: 10.1017/9781316848616
  22. Strebeck R, Jensen B, Magann EF. Thick placenta in pregnancy: a review. Obstet Gynecol Surv. 2022;77(9):547–557. EDN: BXYXVN doi: 10.1097/OGX.000000000000105
  23. Sun X, Shen J, Wang L. Insights into the role of placenta thickness as a predictive marker of perinatal outcome. J Int Med Res. 2021;49(2):300060521990969. EDN: HRYAGG doi: 10.1177/0300060521990969
  24. Wan Masliza WD, Bajuri MY, Hassan MR, et al. Sonographically abnormal placenta: an association with an increased risk poor pregnancy outcomes. Clin Ter. 2017;168(5):e283–e289. doi: 10.7417/T.2017.2021
  25. Sharami SH, Milani F, Fallah Arzpeyma S, et al. The relationship between placental thickness and gestational age in pregnant women: a cross-sectional study. Health Sci Rep. 2023;6(5):e1228. doi: 10.1002/hsr2.1228
  26. Lee AJ, Bethune M, Hiscock RJ. Placental thickness in the second trimester: a pilot study to determine the normal range. J Ultrasound Med. 2012;31:213–218. doi: 10.7863/jum.2012.31.2.213
  27. Berceanu C, Tetileanu AV, Ofiţeru AM, et al. Morphological and ultrasound findings in the placenta of diabetic pregnancy. Rom J Morphol Embryol. 2018;59(1):175–186.
  28. Pásztor N, Sikovanyecz J, Keresztúri A, et al. Evaluation of the relation between placental weight and placental weight to foetal weight ratio and the causes of stillbirth: a retrospective comparative study. J Obstet Gynaecol. 2018;38(1):74–80. doi: 10.1080/01443615.2017.1349084
  29. Hayward CE, Lean S, Sibley CP, et al. Placental adaptation: what can we learn from birthweight: placental weight ratio? Front Physiol. 2016;7:28. doi: 10.3389/fphys.2016.00028
  30. Gloria-Bottini F, Neri A, Coppeta L, et al. Correlation between birth weight and placental weight in healthy and diabetic puerperae. Taiwan J Obstet Gynecol. 2016;55(5):697–699. doi: 10.1016/j.tjog.2015.03.013
  31. Carrasco-Wong I, Moller A, Giachini FR, et al. Placental structure in gestational diabetes mellitus. Biochim Biophys Acta Mol Basis Dis. 2020;1866(2):165535. EDN: XPXHTX doi: 10.1016/j.bbadis.2019.165535
  32. Torres-Torres J, Monroy-Muñoz IE, Perez-Duran J, et al. Cellular and molecular pathophysiology of gestational diabetes. Int J Mol Sci. 2024;25(21):11641. doi: 10.3390/ijms252111641
  33. Dall’Asta A, Melito C, Morganelli G, et al. Determinants of placental insufficiency in fetal growth restriction. Ultrasound Obstet Gynecol. 2023;61(2):152–157. EDN: UDDDGR doi: 10.1002/uog.26111
  34. Huynh J, Yamada J, Beauharnais C, et al. Type 1, type 2 and gestational diabetes mellitus differentially impact placental pathologic characteristics of uteroplacental malperfusion. Placenta. 2015;36(10):1161–1166. EDN: VFAGZH doi: 10.1016/j.placenta.2015.08.004
  35. Pietryga M, Biczysko W, Wender-Ozegowska E, et al. Ultrastructural examination of the placenta in pregnancy complicated by diabetes mellitus. Ginekol Pol. 2004;75(2):111–118. (In Polish)
  36. Sun C, Groom KM, Oyston C, et al. The placenta in fetal growth restriction: What is going wrong? Placenta. 2020;96:10–18. EDN: JKXJYK doi: 10.1016/j.placenta.2020.05.003
  37. Fasoulakis Z, Koutras A, Antsaklis P, et al. Intrauterine growth restriction due to gestational diabetes: from pathophysiology to diagnosis and management. Medicina (Kaunas). 2023;59(6):1139. EDN: GJHRZX doi: 10.3390/medicina59061139
  38. Dumolt JH, Powell TL, Jansson T. Placental function and the development of fetal overgrowth and fetal growth restriction. Obstet Gynecol Clin North Am. 2021;48(2):247–266. EDN: XEVUUH doi: 10.1016/j.ogc.2021.02.001
  39. Starikov R, Has P, Wu R, et al. Small-for-gestational age placentas associate with an increased risk of adverse outcomes in pregnancies complicated by either type I or type II pre-gestational diabetes mellitus. J Matern Fetal Neonatal Med. 2022;35(9):1677–1682. EDN: JREGNU doi: 10.1080/14767058.2020.1767572
  40. Aldahmash WM, Alwasel SH, Aljerian K. Gestational diabetes mellitus induces placental vasculopathies. Environ Sci Pollut Res Int. 2022;29(13):19860–19868. EDN: GYZYIN doi: 10.1007/s11356-021-17267-y
  41. Vafaei H, Karimi Z, Akbarzadeh-Jahromi M, et al. Association of placental chorangiosis with pregnancy complication and prenatal outcome: a case-control study. BMC Pregnancy Childbirth. 2021;21(1):99. EDN: SGGWJZ doi: 10.1186/s12884-021-03576-0
  42. Stanek J. Placental recent/on-going foetal vascular malperfusion with endothelial fragmentation is diagnostically equivalent to established distal villous lesions of foetal vascular malperfusion. Pol J Pathol. 2022;73(3):198–207. EDN: XERAXG doi: 10.5114/pjp.2022.124487
  43. Rossi R, Scillitani G, Vimercati A, et al. Diabetic placenta: ultrastructure and morphometry of the term villi. Anal Quant Cytopathol Histpathol. 2012;34(5):239–247. EDN: RKRULJ
  44. Ehlers E, Talton OO, Schust DJ, et al. Placental structural abnormalities in gestational diabetes and when they develop: a scoping review. Placenta. 2021;116:58–66. EDN: CANQOU doi: 10.1016/j.placenta.2021.04.005
  45. Thunbo MØ, Sinding M, Bogaard P, et al. Postpartum placental CT angiography in normal pregnancies and in those complicated by diabetes mellitus. Placenta. 2018;69:20–25. doi: 10.1016/j.placenta.2018.06.309
  46. Liang X, Zhang J, Wang Y, et al. Comparative study of microvascular structural changes in the gestational diabetic placenta. Diab Vasc Dis Res. 2023;20(3):14791641231173627. EDN: ENEDBJ doi: 10.1177/14791641231173627
  47. Jaiman S, Romero R, Pacora P, et al. Disorders of placental villous maturation in fetal death. J Perinat Med. 2020. EDN: EPTYCL doi: 10.1515/jpm-2020-0030
  48. Higgins M, Felle P, Mooney EE, et al. Stereology of the placenta in type 1 and type 2 diabetes. Placenta. 2011;32(8):564–569. doi: 10.1016/j.placenta.2011.04.015
  49. Augustine G, Pulikkathodi M, SR, TK J. A study of placental histological changes in gestational diabetes mellitus on account of fetal hypoxia. Int J Med Sci Public Health. 2016;5(12):2457–2460. doi: 10.5455/ijmsph.2016.29042016494
  50. Memon S, Goswami P, Lata H. Gross and histological alteration in the placenta of mothers suffering from gestational diabetes. J Liaquat Univ Med Hea. Sci. 2015;14(1):16–20.
  51. Ohmaru-Nakanishi T, Asanoma K, Fujikawa M, et al. Fibrosis in preeclamptic placentas is associated with stromal fibroblasts activated by the transforming growth factor-β1 signaling pathway. Am J Pathol. 2018;188(3):683–695. EDN: YENLPN doi: 10.1016/j.ajpath.2017.11.008
  52. Verma R, Mishra SK, Jagat M. Cellular changes in the placenta in pregnancies complicated with diabetes. Int. J Morphol. 2010;28(1):259–264. doi: 10.4067/S0717-95022010000100038
  53. Mirza FG, Ghulmiyyah LM, Tamim H, et al. To ignore or not to ignore placental calcifications on prenatal ultrasound: a systematic review and meta-analysis. J Matern Fetal Neonatal Med. 2018;31(6):797–804. doi: 10.1080/14767058.2017.1295443
  54. Chen KH, Chen LR, Lee YH. The role of preterm placental calcification in high-risk pregnancy as a predictor of poor uteroplacental blood flow and adverse pregnancy outcome. Ultrasound Med Biol. 2012;38(6):1011–1018. EDN: PINKXF doi: 10.1016/j.ultrasmedbio.2012.02.004
  55. Moran M, Higgins M, Zombori G, et al. Computerized assessment of placental calcification post-ultrasound: a novel software tool. Ultrasound Obstet Gynecol. 2013;41(5):545–549. doi: 10.1002/uog.12278
  56. Lei B, Yao Y, Chen S, et al. Discriminative learning for automatic staging of placental maturity via multi-layer fisher vector. Sci Rep. 2015;5:12818. doi: 10.1038/srep12818
  57. Paiker M, Khan K, Mishra D, et al. Morphological, morphometric, and histological evaluation of the placenta in cases of intrauterine fetal death. Cureus. 2024;16(6):e62871. doi: 10.7759/cureus.62871
  58. Goldstein JA, Nateghi R, Irmakci I, et al. Machine learning classification of placental villous infarction, perivillous fibrin deposition, and intervillous thrombus. Placenta. 2023;135:43–50. EDN: BLCXHC doi: 10.1016/j.placenta.2023.03.003
  59. Beauharnais CC, Roberts DJ, Wexler DJ. High rate of placental infarcts in type 2 compared with type 1 diabetes. J Clin Endocrinol Metab. 2012;97(7):E1160–E1164. doi: 10.1210/jc.2011-3326
  60. Aurioles-Garibay A, Hernandez-Andrade E, Romero R, et al. Prenatal diagnosis of a placental infarction hematoma associated with fetal growth restriction, preeclampsia and fetal death: clinicopathological correlation. Fetal Diagn Ther. 2014;36(2):154–161. doi: 10.1159/000357841
  61. Rais R, Starikov R, Robert W, et al. Clinicopathological correlation of large-for-gestational age placenta in pregnancies with pregestational diabetes. Pathol Res Pract. 2019;215(3):405–409. doi: 10.1016/j.prp.2018.12.029
  62. Istrate-Ofiţeru AM, Berceanu C, Berceanu S, et al. The influence of gestational diabetes mellitus (GDM) and gestational hypertension (GH) on placental morphological changes. Rom J Morphol Embryol. 2020;61(2):371–384. EDN: EKSKRZ doi: 10.47162/RJME.61.2.07
  63. Rahman A, Zhou Y-Q, Yee Y, et al. Ultrasound detection of altered placental vascular morphology based on hemodynamic pulse wave reflection. Am J Physiol Heart Circ Physiol. 2017;312:H1021e9. doi: 10.1152/ajpheart.00791.2016
  64. Mahalinga G, Rajasekhar KV, Venkateshwar Reddy M, et al. Morphometric Analysis of placenta and fetal doppler indices in normal and high-risk pregnancies. Cureus. 2024;16(6):e61663. EDN: UTFKNC doi: 10.7759/cureus.61663
  65. Audette MC, Kingdom JC. Screening for fetal growth restriction and placental insufficiency. Semin Fetal Neonatal Med. 2018;23(2):119–125. EDN: WAFXMP doi: 10.1016/j.siny.2017.11.004
  66. Altorjay ÁT, Surányi A, Nyári T, et al. Use of placental vascularization indices and uterine artery peak systolic velocity in early detection of pregnancies complicated by gestational diabetes, chronic or gestational hypertension, and preeclampsia at risk. Croat Med J. 2017;58(2):161–169. doi: 10.3325/cmj.2017.58.161
  67. Ashwal E, Ali-Gami J, Aviram A, et al. Contribution of second trimester sonographic placental morphology to uterine artery Doppler in the prediction of placenta-mediated pregnancy complications. J Clin Med. 2022;11(22):6759. EDN: HNGAIQ doi: 10.3390/jcm11226759
  68. Bochkareva LA, Nedosugova LV, Petunina NA, et al. Some mechanisms of inflammation development in type 2 diabetes mellitus. Diabetes mellitus. 2021;24(4):334–341. (In Russ.) doi: 10.14341/DM12746
  69. Pan X, Jin X, Wang J, et al. Placenta inflammation is closely associated with gestational diabetes mellitus. Am J Transl Res. 2021;13(5):4068–4079.
  70. Tauber Z, Burianova A, Koubova K, et al. The interplay of inflammation and placenta in maternal diabetes: insights into Hofbauer cell expression patterns. Front Immunol. 2024;15:1386528. doi: 10.3389/fimmu.2024.1386528
  71. Chittezhath M, Gunaseelan D, Zheng X, et al. Islet macrophages are associated with islet vascular remodeling and compensatory hyperinsulinemia during diabetes. Am J Physiol Metab. 2019;317(6):E1108–E1120. doi: 10.1152/ajpendo.00248.2019
  72. Musa E, Salazar-Petres E, Arowolo A, et al. Obesity and gestational diabetes independently and collectively induce specific effects on placental structure, inflammation and endocrine function in a cohort of South African women. J Physiol. 2023;601(7):1287–1306. doi: 10.1113/JP284139

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Placentomegaly: a, ultrasound placentometry, placental thickness of 65 mm; b, macroscopically increased placental size, placental weight of 770 g; c, microscopically chronic placental insufficiency with the predominance of immature intermediate villi, hypervascularization (chorangiosis), terminal villi with an increased number of capillaries up to 7–11 (with the norm being 3–4 capillaries), and congestive vascular plethora. Clinical data: pregnancy 38 weeks, diabetes mellitus type 2, fetal macrosomia, and newborn weight of 4250 g.

Download (287KB)
3. Fig. 2. Placental hypoplasia: a, ultrasound placentometry, placental thickness of 23 mm; b, macroscopically decreased placental size, placental weight of 243 g; c, microscopically hypoplastic chronic placental insufficiency, decreased size of terminal villi and number of capillaries, and the predominance of immature villi. Clinical data: pregnancy 38 weeks, diabetes mellitus type 2, intrauterine growth restriction, and newborn weight of 2430 g

Download (188KB)
4. Fig. 3. Marginal placental infarction: a, ultrasound features, small hyperechogenic avascular structures on the periphery of the placenta, placentomegaly, and no hemodynamic Doppler disturbances; b, macroscopically, the infarction zone looks like a gray-yellow mass of a triangular shape; c, microscopically, the infarction zone is represented by an accumulation of fibrinoid in the intervillous space with chorionic villi embedded therein with little or no blood flow. Clinical data: pregnancy 38 weeks, diabetes mellitus type 1, fetal macrosomia, and newborn weight of 4300 g.

Download (419KB)
5. Fig. 4. Paracentral placental infarction: a, ultrasound features, placental hypoplasia, hyperechogenic avascular structures, placental tissue damage up to 30%, and critical hemodynamic Doppler disturbances; b, macroscopic signs of a gray-yellow mass of a round shape in the paracentral zone; c, microscopically, the chorionic villi are surrounded by fibrinoid masses, dystrophic changes in the villi, compaction of the villous stroma, atelectasis of the intervillous space, and arterial spasm. Clinical data: pregnancy 35 weeks, diabetes mellitus type 1, intrauterine growth restriction, and newborn weight of 1980 g.

Download (349KB)

Copyright (c) 2025 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.