Clinical data banking in obstetrics—advantages and disadvantages of the strategy using the example of preterm birth risk modeling in multiple pregnancies

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Despite technological advancements, the key resource for predicting obstetric complications remains the collection and analysis of clinical data. Risk stratification is crucial in obstetrics, enabling tailored antenatal care and preventive measures to reduce preterm birth rates. This is particularly important in multiple pregnancies, where preterm birth occurs in 40%–60% of cases, which causes a high risk of developing organic and functional disorders, leading to long-term disabilities and social challenges for children.

AIM: The aim of this study was to develop preterm birth risk prediction models for multiple pregnancies using clinical data and to evaluate the advantages and disadvantages of data banking.

METHODS: This retrospective single-center case-control study was conducted using a registry of 630 dichorionic twin deliveries (RU2024621911 as of May 3, 2024). All cases were characterized by 212 clinical parameters, with a new approach to identifying promising areas for collecting biological samples of twins being developed.

RESULTS: The study comprised spontaneous preterm deliveries (main group, n = 204) and term deliveries (control group, n = 323). Multifactorial modeling of preterm birth risk in dichorionic twin pregnancy showed that very early preterm birth (<31 weeks) is associated with type 1 diabetes mellitus and cervical insufficiency (good predictive power). Early preterm birth (31–33 weeks) is associated with type 2 diabetes mellitus, prior induced abortion, chronic pyelonephritis, and cervical insufficiency (good predictive power). Late preterm birth (>33 weeks) is associated with IVF conception, cholestatic hepatosis, and cervical insufficiency (moderate predictive power).

CONCLUSION: Clinical data registries are valuable for risk modeling, but standalone predictive models may have limitations. Integrating biobanks that combine clinical data with biological samples could enhance prediction accuracy and advance obstetric care.

Full Text

Restricted Access

About the authors

Olga V. Pachuliia

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: for.olga.kosyakova@gmail.com
ORCID iD: 0000-0003-4116-0222
SPIN-code: 1204-3160

MD, Cand. Sci. (Medicine)

Russian Federation, Saint Petersburg

Elena V. Shipitsyna

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: shipitsyna@inbox.ru
ORCID iD: 0000-0002-2309-3604
SPIN-code: 7660-7068

Dr. Sci. (Biology)

Russian Federation, Saint Petersburg

Anastasiia P. Sazonova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: nastenka.sazonova.97@mail.ru
ORCID iD: 0009-0007-4567-7831
SPIN-code: 8721-1390

MD

Russian Federation, Saint Petersburg

Yulia A. Nasykhova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: yulnasa@gmail.com
ORCID iD: 0000-0002-3543-4963
SPIN-code: 9661-9416

Cand. Sci. (Biology)

Russian Federation, Saint Petersburg

Olesya N. Bespalova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: shiggerra@mail.ru
ORCID iD: 0000-0002-6542-5953
SPIN-code: 4732-8089

MD, Dr. Sci. (Medicine)

Russian Federation, Saint Petersburg

Andrey S. Glotov

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: anglotov@mail.ru
ORCID iD: 0000-0002-7465-4504
SPIN-code: 1406-0090

Dr. Sci. (Biology)

Russian Federation, Saint Petersburg

References

  1. Ivanov AV. Registers as a basis for data collection and evidence generation. Real-World Data and Evidence. 2021;1(1):10–15. EDN: NYUZGG doi: 10.37489/2782-3784-myrwd-3
  2. Alkhatib R, Gaede KI. Data management in biobanking: strategies, challenges, and future directions. BioTech (Basel). 2024;13(3):34. EDN: WMEUUB doi: 10.3390/biotech13030034
  3. Vvedenskaya EV. Digital agents in medicine: new opportunities and challenges. Ethical Thought. 2024;24(1):115–128. EDN: YGZXWK doi: 10.21146/2074-4870-2024-24-1-115-128
  4. Borovskaya VG, Kurуlev AA. The role of RWD/RWE in health technology assessment. Real-World Data and Evidence. 2023;3(1):1–8. EDN: XKBEEQ doi: 10.37489/2588-0519-2023-3-1-1-8
  5. Zheleznyakova IA, Pirova GI, Proxorovich EA. Patient registers and account registries of compulsory medical insurance: integration and replaceability. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2018;11(4):67–72. EDN: YYRHYL doi: 10.17749/2070-4909.2018.11.4.067-072
  6. Yagudina RI, Litvinenko MM, Sorokovikov IV. Patient registries: structure, functions and applications. FARMAKOEKONOMIKA. Modern Pharmacoeconomics and Pharmacoepidemiology. 2011;4(4):3–7. EDN: OISBOT doi: 10.30809/phe.4.2011.1
  7. Martsevich SYu, Lukina YuV, Kutishenko NP, et al. Guidelines “Medical registries. Role in evidence-based medicine. Recommendations for creation”: a brief review. Cardiovascular Therapy and Prevention. 2023;22(6):95–99. EDN: RPDYDF doi: 10.15829/1728-8800-2023-3615
  8. Belyalov FI. Risk prediction scores of diseases. Complex Issues of Cardiovascular Diseases. 2018;7(1):84–93. EDN: UUGWOG doi: 10.17802/2306-1278-2018-7-1-84-93
  9. Knyazev SA, Zhilinkova NG. Prediction is better than treatment. Risk strategy. Obstetrics and Gynecology: News, Opinions, Training. 2019;7(3):83–87. EDN: ZZACBA doi: 10.24411/2303-9698-2019-13012
  10. Boldina YuS, Ivshin AA. Machine learning in predicting obstetric hemorrhage. Obstetrics, Gynecology and Reproduction. 2024;18(3):365–381. EDN: FCWKDC doi: 10.17749/2313-7347/ob.gyn.rep.2024.47
  11. Sakharova ES, Keshishyan ES, Alyamovskaya GA. Premature birth problem in modern stage of medical science development. Part 1. Russian Bulletin of Perinatology and Pediatrics. 2017;62(3):15–19. EDN: YUBSGP doi: 10.21508/1027-4065-2017-62-3-15-19
  12. Seetho S, Kongwattanakul K, Saksiriwuttho P, et al. Epidemiology and factors associated with preterm births in multiple pregnancy: a retrospective cohort study. BMC Pregnancy Childbirth. 2023;23:872. EDN: ZWEOPB doi: 10.1186/s12884-023-06186-0
  13. Dobrokhotova YuE, Makarov OV, Kuznetsov PA, et al. Delayed interval delivery after the birth of the first fetus from multiple gestation (description of the serial cases). Obstetrics and Gynecology. 2017;(2):86–89. EDN: YGCNQN doi: 10.18565/aig.2017.2.86-9
  14. Kosyakova OV, Bespalova ON. Prevention and therapy of threatened preterm birth in multiple pregnancies. Journal of Obstetrics and Women’s Diseases. 2019;68(4):55–70. EDN: TLCJUV doi: 10.17816/JOWD68455-70
  15. Pachulia (Kosyakova) OV, Bespalova ON, Klitsenko OA. Multifactorial prediction of preterm birth in multiple pregnancies. Gynecology, Obstetrics and Perinatology. 2020;19(2):43–49. EDN: ACSAFJ doi: 10.20953/1726-1678-2020-2-43-49
  16. Huang Y, Li Q, Zhang W, et al. Predicting cervical insufficiency in twin pregnancies using ultrasound cervical measurements and elastography. Int J Med Sci. 2024;21(15):3010–3017. EDN: BHYLKO doi: 10.7150/ijms.99444
  17. Zhestkova NV. Cholestatic hepatosis of pregnancy (pathogenesis, clinical features, treatment). Journal of Obstetrics and Women’s Diseases. 2010;59(1):91–97. (In Russ.) EDN: NEAWDR doi: 10.17816/JOWD59191-97
  18. Gardiner FW, McCuaig R, Arthur C, et al. The prevalence and pregnancy outcomes of intrahepatic cholestasis of pregnancy: a retrospective clinical audit review. Obstet Med. 2019;12(3):123–128. doi: 10.1177/1753495X18797749
  19. Kapustin RV, Kopteeva EV, Alekseenkova EN, et al. Analysis of risk factors and perinatal mortality structure in pregnant patients with diabetes mellitus. Doctor.Ru. 2021;20(6):46–52. EDN: CFVOPZ doi: 10.31550/1727-2378-2021-20-6-46-52
  20. Kapustin RV, Alekseenkova EN, Arzhanova ON, et al. Preterm birth in women with diabetes mellitus. Journal of Obstetrics and Women’s Diseases. 2020;69(1):17–26. EDN: IURNDK doi: 10.17816/JOWD69117-26
  21. Styazhkina SN, Chernenkova ML, Krivenko PA, et al. Course and outcomes of pregnancy in women with chronic pyelonephritis. Modern Problems of Science and Education. 2015;(1–1):1296. EDN: VIEWPT
  22. DeYoung TH, Whittington JR, Ennen CS, et al. Pyelonephritis in pregnancy: relationship of fever and maternal morbidity. AJP Rep. 2019;9(4):e366–e371. doi: 10.1055/s-0039-1696666

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Changes in the frequency of term and preterm (spontaneous and induced) births in women with multiple pregnancies by year. рtrend, significance of differences and direction of trend (χ2 criterion for linear trend).

Download (137KB)
3. Fig. 2. Multiаfactorial modeling of preterm birth risk (ROC curves) stratified by the gestational age: a, <31 weeks; b, 31–33 weeks; c, >33 weeks.

Download (142KB)

Copyright (c) 2025 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.