Virulence and pathogenicity factors of S. agalactiae strains isolated from pregnant women and newborns

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Obstetric and neonatal infections caused by Steptococcus agalactiae are among the most significant perinatal infections. To date, intrapartum antibiotic prophylaxis is used to prevent the transmission of the pathogen to the child, however, the growth of antibiotic resistance and ineffectiveness of therapy against late-onset neonatal infection are its limitations. Vaccination is considered to be the most effective method for preventing diseases caused by S. agalactiae in both pregnant women and newborn babies. To identify promising vaccine targets and to develop alternative prevention approaches, it is necessary to study the virulence factors of S. agalactiae strains and their variability in the population.

AIM: The aim of this study was to evaluate the variability of virulence and pathogenicity factors (capsular polysaccharides, pili, hypervirulent sequence type ST-17, biofilm-forming ability, antibiotic resistance) of S. agalactiae isolated from pregnant women and newborn infants in St. Petersburg, Russia.

MATERIALS AND METHODS: We studied isolates of S. agalactiae out of clinical material samples obtained from pregnant women and newborns at the D.O. Ott Research Institute of Obstetrics, Gynecology, and Reproductology in 2018-2020. The PCR method was used to determine the types of capsular polysaccharides, pili, and strain affiliation with the hypervirulent sequencing type ST-17. Biofilm-forming ability was determined by the Christensen method. The antibiotic sensitivity was determined by disc diffusion.

RESULTS: We examined 60 clinical isolates of S. agalactiae. The most common S. agalactiae serotypes were Ia, Ib, II, III, IV, and V; in total, these six serotypes accounted for 95.1% of all strains. The most common pili genotype was PI-1 + PI-2a (60%). Resistance to erythromycin was found in 36.7% of the strains, and a similar number of the strains were resistant to clindamycin. The ability to form biofilms was detected in 68% of the strains, and the increased ability was associated with the PI-2b pili allele.

CONCLUSIONS: A hexavalent vaccine based on capsular polysaccharides of types Ia, Ib, II, III, IV, and V would have a 95% efficacy in this region. Stable distribution of different pili types is an important factor when using pili as vaccine targets. The high level of resistance of S. agalactiae strains to erythromycin and clindamycin indicates that isolates should be tested for sensitivity to these antibiotics before their use, and regular regional monitoring of antibiotic resistance of the pathogen to update clinical guidelines should be performed.

Full Text

Restricted Access

About the authors

Ksenia A. Kolousova

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; Saint Petersburg State University

Email: gimkolos@gmail.com
Russian Federation, Saint Petersburg

Elena V. Shipitsyna

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Author for correspondence.
Email: shipitsyna@inbox.ru
ORCID iD: 0000-0002-2309-3604
SPIN-code: 7660-7068

Dr. Sci. (Biol.)

Russian Federation, Saint Petersburg

Kira V. Shalepo

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; Saint Petersburg State Pediatric Medical University

Email: 2474151@mail.ru
ORCID iD: 0000-0002-3002-3874

Cand. Sci. (Biol.)

Russian Federation, Saint Petersburg

Alevtina M. Savicheva

Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott; Saint Petersburg State Pediatric Medical University

Email: savitcheva@mail.ru
ORCID iD: 0000-0003-3870-5930
SPIN-code: 8007-2630
Scopus Author ID: 6602838765

MD, Dr. Sci. (Med.), Professor, Honored Scientist of the Russian Federation

Russian Federation, Saint Petersburg

References

  1. Heath PT, Schuchat A. Perinatal group B streptococcal disease. Best Pract Res Clin Obstet Gynaecol. 2007;21(3):411–424. doi: 10.1016/j.bpobgyn.2007.01.003
  2. Davies HG, Carreras-Abad C, Le Doare K, Heath PT. Group B streptococcus: trials and tribulations. Pediatr Infect Dis J. 2019;38(6S Suppl 1):S72–S76. doi: 10.1097/INF.0000000000002328
  3. Verani JR, McGee L, Schrag SJ. Prevention of perinatal group B streptococcal disease revised guidelines from CDC, 2010. Morbidity and Mortality Weekly Report. 2010;59:1–31.
  4. Raabe VN, Shane AL. Streptococcus agalactiae (Group B Streptococcus). Microbiol Spectr. 2018;7(2):723−729.e1. doi: 10.1016/B978-0-323-40181-4.00119-5
  5. Baker CJ, Rench MA, Fernandez M, et al. Safety and immunogenicity of a bivalent group B streptococcal conjugate vaccine for serotypes II and III. J Infect Dis. 2003;188(1):66–73. doi: 10.1086/375536
  6. Kim SY, Nguyen C, Russell LB, et al. Cost-effectiveness of a potential group B streptococcal vaccine for pregnant women in the United States. Vaccine. 2017;35(45):6238–6247. doi: 10.1016/j.vaccine.2017.08.085
  7. Rosini R, Rinaudo CD, Soriani M, et al. Identification of novel genomic islands coding for antigenic pilus-like structures in Streptococcus agalactiae. Mol Microbiol. 2006;61(1):126–141. doi: 10.1111/j.1365-2958.2006.05225.x
  8. Jones N, Bohnsack JF, Takahashi S, et al. Multilocus sequence typing system for group B streptococcus. J Clin Microbiol. 2003;41(6):2530–2536. doi: 10.1128/JCM.41.6.2530-2536.2003
  9. Tazi A, Disson O, Bellais S, et al. The surface protein HvgA mediates group B streptococcus hypervirulence and meningeal tropism in neonates. J Exp Med. 2010;207(11):2313–2322. doi: 10.1084/jem.20092594
  10. Olson ME, Ceri H, Morck DW, et al. Biofilm bacteria: Formation and comparative susceptibility to antibiotics. Can J Vet Res. 2002;66(2):86–92.
  11. Rinaudo CD, Rosini R, Galeotti CL, et al. Specific involvement of pilus type 2a in biofilm formation in group B Streptococcus. PLoS One. 2010;5(2):1–11. doi: 10.1371/journal.pone.0009216
  12. Montero JFD, Tajiri HA, Barra GMO, et al. Biofilm behavior on sulfonated poly(ether-ether-ketone) (sPEEK). Mater Sci Eng C. 2017;70(3):456–460. doi: 10.1016/j.msec.2016.09.017
  13. Yao K, Poulsen K, Maione D, et al. Capsular gene typing of Streptococcus agalactiae compared to serotyping by latex agglutination. J Clin Microbiol. 2013;51(2):503–507. doi: 10.1128/JCM.02417-12
  14. Teatero S, Neemuchwala A, Yang K, et al. Genetic evidence for a novel variant of the pilus Island 1 backbone protein in group B Streptococcus. J Med Microbiol. 2017;66(10):1409–1415. doi: 10.1099/jmm.0.000588
  15. Lamy MC, Dramsi S, Billoët A, et al. Rapid detection of the “highly virulent” group B streptococcus ST-17 clone. Microbes Infect. 2006;8:1714–1722. doi: 10.1016/j.micinf.2006.02.008
  16. European Committee on Antimicrobial Susceptibility Testing. EUCAST disk diffusion test methodology. Antimicrobial susceptibility testing. 2021. [cited 10 Sept 2021]. Available from: http://www.eucast.org/ast_of_bacteria/disk_diffusion_methodology
  17. Christensen GD, Simpson WA, Younger JJ, et al. Adherence of coagulase-negative staphylococci to plastic tissue culture plates: A quantitative model for the adherence of staphylococci to medical devices. J Clin Microbiol. 1985;22(6):996–1006. doi: 10.1128/jcm.22.6.996-1006.1985
  18. Russell NJ, Seale AC, O’Driscoll M, et al. Maternal colonization with group B Streptococcus and serotype distribution worldwide: Systematic review and meta-analyses. Clin Infect Dis. 2017;65(Suppl 2):S100–S111. doi: 10.1093/cid/cix658
  19. Shipitsyna E, Shalepo K, Zatsiorskaya S, et al. Significant shifts in the distribution of vaccine capsular polysaccharide types and rates of antimicrobial resistance of perinatal group B streptococci within the last decade in St. Petersburg, Russia. Eur J Clin Microbiol Infect Dis. 2020;39(8):1487–1493. doi: 10.1007/s10096-020-03864-1
  20. Buurman ET, Timofeyeva Y, Gu J, et al. A novel hexavalent capsular polysaccharide conjugate vaccine (GBS6) for the prevention of neonatal group B streptococcal infections by maternal immunization. J Infect Dis. 2019;220(1):105–115.
  21. Shabayek S, Spellerberg B. Group B streptococcal colonization, molecular characteristics, and epidemiology. Front Microbiol. 2018;9(MAR):1–14. doi: 10.3389/fmicb.2018.00437
  22. Martins ER, Andreu A, Melo-Cristino J, Ramirez M. Distribution of pilus islands in Streptococcus agalactiae that cause human infections: Insights into evolution and implication for vaccine development. Clin Vaccine Immunol. 2013;20(2):313–316. doi: 10.1128/CVI.00529-12
  23. McGee L, Chochua S, Li Z, et al. Multistate, population-based distributions of candidate vaccine targets, clonal complexes, and resistance features of invasive Group B Streptococci within the US: 2015–2017. Clin Infect Dis. 2021;72(6):1003–1013.
  24. Dramsi S, Caliot E, Bonne I, et al. Assembly and role of pili in group B streptococci. Mol Microbiol. 2006;60(6):1401–1413. doi: 10.1111/j.1365-2958.2006.05190.x
  25. Margarit I, Rinaudo CD, Galeotti CL, et al. Preventing bacterial infections with pilus-based vaccines: The group B streptococcus paradigm. J Infect Dis. 2009;199(1):108–115. doi: 10.1086/595564
  26. Alvim DCSS, Ferreira AFM, Leal MA, et al. Biofilm production and distribution of pilus variants among Streptococcus agalactiae isolated from human and animal sources. Biofouling. 2019;35(8):938–944. doi: 10.1080/08927014.2019.1678592
  27. Rosini R, Margarit I. Biofilm formation by Streptococcus agalactiae: Influence of environmental conditions and implicated virulence factor. Front Cell Infect Microbiol. 2015;5(FEB):2013–2016. doi: 10.3389/fcimb.2015.00006
  28. Cagno CK, Pettit JM, Weiss BD. Prevention of perinatal group B streptococcal disease: Updated CDC guideline. Am Fam Physician. 2012;86(1):59–65.
  29. Castor ML, Whitney CG, Como-Sabetti K, et al. Antibiotic resistance patterns in invasive group B streptococcal isolates. Infect Dis Obstet Gynecol. 2008;2008(1):1–5. doi: 10.1155/2008/727505

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Optical density of biofilms formed by Streptococcus agalactiae strains with pili types PI-2a and PI-2b. OD: optical density

Download (44KB)

Copyright (c) 2021 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies