Bacterial communities forming the vaginal micro-ecosystem in norm and in bacterial vaginosis

Cover Page


Background. Bacterial vaginosis (BV) is disturbance of the vaginal microbiota, characterized by displacement of lactobacilli with anaerobic bacteria and capable of adversely affecting women’s reproductive health. In the development of BV, a wide spectrum of bacteria substantially differing in their properties is involved. Grouping vaginal bacterial communities into clusters, or types of microbiocenosis, might contribute to understanding of pathogenic mechanisms and elaboration of effective tools for diagnostics and therapy of the disease.

Aim. Determination and comparative analysis of clusters of vaginal bacterial communities in norm and in BV.

Materials and methods. Women of reproductive age were enrolled in the study. For the diagnosis of BV, the Nugent score was used. Vaginal swab samples from all women were analyzed with the test Femoflor-16, intended for evaluation of the vaginal microbiocenosis using multiplex quantitative real-time PCR. Two-step cluster analysis was applied for grouping bacterial communities. Differences between the clusters were evaluated using pairwise comparisons.

Results. Of 280 women enrolled in the study, 172 had normal microflora, 27 – intermediate microflora, 81 – BV. In cluster analysis, 270 samples valid in PCR testing were included. All the vaginal bacterial communities were grouped into 4 clusters. Cluster 1 (n = 171) included cases when the vaginal microflora consisted mostly of lactobacilli. Cluster 2 (n = 11) encompassed cases of domination of aerobic microflora: Enterobacteriaceae, Streptococcus and Staphylococcus. Clusters 3 (n = 57) and 4 (n = 31) were connected with BV and included cases of prevailing of facultative anaerobes (Gardnerella vaginalis, Atopobium vaginae) and obligate anaerobes (Sneathia/Leptotrichia/Fusobacterium, Megasphaera/Veillonella/Dialister, Lachnobacterium/Clostridium), respectively. Nearly all cases of cluster 1 belonged to the category of normal microflora of the Nugent score. The majority of bacterial communities of cluster 2 matched intermediate microflora, cluster 3 – BV category with a score of 7 or 8, cluster 4 – BV category with a score of 9 or 10. The clusters differed significantly in vaginal рН, with the highest values observed for cluster 4.

Conclusions. Vaginal bacterial communities are grouped into 4 main clusters, characterized by domination of lactobacilli, aerobes, facultative anaerobes or obligate anaerobes. The clusters belong to different categories of the Nugent score and differ significantly in vaginal pH.

Veronika V. Nazarova

Author for correspondence.
Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Russian Federation, St. Petersburg

bacteriologist, Laboratory of Microbiology

Elena V. Shipitsyna
Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott St. Petersburg

PhD, Leading Researcher, Laboratory of Microbiology

Kira V. Shalepo
Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Russian Federation, St. Petersburg

PhD, Senior Researcher of Laboratory of Microbiology

Alevtina M. Savicheva
Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott
Russian Federation, St. Petersburg

PhD, MD, Professor, Head of Laboratory of Microbiology

  • Taylor BD, Darville T, Haggerty CL. Does bacterial vaginosis cause pelvic inflammatory disease. Sex Transm Dis. 2013;40(2):117-22. doi: 10.1097/OLQ.0b013e31827c5a5b.
  • Donati L, Di Vico A, Nucci M, et al. Vaginal microbial flora and outcome of pregnancy. Arch Gynecol Obstet. 2010;281(4):589-600. doi: 10.1007/s00404-009-1318-3.
  • Haggerty CL, Totten PA, Tang G, et al. Identification of novel microbes associated with pelvic inflammatory disease and infertility. Sex Transm Infect. 2016;92(6):441-6. doi: 10.1136/sextrans-2015-052285.
  • Bradshaw CS, Morton AN, Hocking J, et al. High recurrence rates of bacterial vaginosis over the course of 12 months after oral metronidazole therapy and factors associated with recurrence. J Infect Dis. 2006;193:1478-86. doi: 10.1086/503780.
  • Klebanoff MA, Schwebke JR, Zhang J, et al. Vulvo vaginal symptoms in women with bacterial vaginosis. Obstet Gynecol. 2004;104(2):267-272. doi: 10.1097/01.AOG.0000134783.98382.b0.
  • Ling Z, Kong J, Liu F, et al. Molecular analysis of the diversity of vaginal microbiota associated with bacterial vaginosis. BMC Genomics. 2010;11(Sep7):488. doi: 10.1186/1471-2164-11-488.
  • Nugent RP, Krohn MA, Hillier SL. Reliability of diagnosing bacterial vaginosis isimproved by a standardized method of gram stain interpretation. J Clin Microbiol. 1991;29:297-301.
  • Amsel R, Totten PA, Spiegel CA, et al. Nonspecific vaginitis. Diagnostic criteria and microbial and epidemiologic associations. Am J Med. 1983;74:14-22. doi: 10.1016/0002-9343(83)91112-9.
  • Назарова В.В., Шипицына Е.В., Герасимова Е.Н., Савичева А.М. Критерии диагностики бактериального вагиноза с использованием теста Фемо флор-16 // Журнал акушерства и женских болезней. – 2017. – Т. 66. – № 4. – С. 57–67. [Nazarova VV, Shipitsyna EV, Gerasimova EN, Savicheva AM. Criteria for diagnosis of bacterial vaginosis using the test Femoflor-16. Journal of Obstetrics and Women’s Diseases. 2017;66(4):57-67. (In Russ.)]. doi: 10.17816/JOWD66457-67.
  • Ravel J, Gajer P, Abdo Z, et al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci USA. 2011;108:S4680-7. doi: 10.1073/pnas.1002611107.
  • Gajer P, Brotman RM, Bail G, et al. Temporal dynamics of the human vaginal microbiota. Science Translational Medicine. 2012;4. doi: 10.1126/scitranslmed.3003605.
  • MacIntyre DA, Chandiramani M, Lee YS, et al. The vaginal microbiome during pregnancy and the postpartum period in a European population. Sci Rep. 2015;5:8988. doi: 10.1038/srep08988.
  • Brotman RM, Shardell MD, Gajer P, et al. Interplay between the temporal dynamics of the vaginal microbiota and human papillomavirus detection. J Infect Dis. 2014;210(11):1723-33. doi: 10.1093/infdis/jiu330.
  • Huang YE, Wang Y, He Y, et al. Homogeneity of the vaginal microbiome at the cervix, posterior fornix, and vaginal canal in pregnant Chinese women. Microb Ecol. 2015;69(2):407-14. doi: 10.1007/s00248-014-0487-1.
  • Srinivasan S, Hoffman NG, Morgan MT, et al. Bacterial communities in women with bacterial vaginosis: high resolution phylogenetic analyses reveal relationships of microbiota to clinical criteria. PLOS One. 2012;7(6):e37818. doi: 10.1371/journal.pone.0037818.
  • Dols JA, Molenaar D, van der Helm JJ, et al. Molecular assessment of bacterial vaginosis by Lactobacillus abundance and species diversity. BMC Infect Dis. 2016;16:180. doi: 10.1186/s12879-016-1513-3.
  • Donders GG, Vereecken A, Bosmans E, et al. Definition of a type of abnormal vaginal flora that is distinct from bacterial vaginosis: aerobic vaginitis. BJOG. 2002;109(1):34-43. doi: 10.1111/j.1471-0528.2002.00432.x.
  • Swidsinski A, Verstraelen H, Loening-Baucke V, et al. Presence of a polymicrobial endometrial biofilm in patients with bacterial vaginosis. PLOS one. 2013;8(1):e53997. doi: 10.1371/journal.pone.0053997.
  • Patterson JL, Stull-Lane A, Girerd PH, Jefferson KK. Analysis of adherence, biofilm formation and cytotoxicity suggests a greater virulence potential of Gardnerella vaginalis relative to other bacterial-vaginosis-associated anaerobes. Microbiology. 2010;156:392-9. doi: 10.1099/mic.0.034280-0.
  • Verstraelen H, Swidsinski A. The biofilm in bacterial vaginosis: implications for epidemiology, diagnosis and treatment. Curr Opin Infect Dis. 2013;26(1):86-9. doi: 10.1097/QCO.0b013e32835c20cd.
  • Machado A, Cerca N. Influence of Biofilm Formation by Gardnerella vaginalis and Other Anaerobes on Bacterial Vaginosis. J Infect Dis. 2015;212(12):1856-61. doi: 10.1093/infdis/jiv338.
  • Alves P, Castro J, Sousa C, et al. Gardnerella vaginalis outcompetes 29 other bacterial species isolated from BV patients in an in vitro biofilm formation model. J Infect Dis. 2014;210(4):593-6. doi: 10.1093/infdis/jiu131.
  • Schellenberg JJ, Links MG, Hill JE, et al. Molecular definition of vaginal microbiota in East African commercial sex workers. Appl Environ Microbiol. 2011;77(12):4066-74. doi: 10.1128/AEM.02943-10.
  • Ferris MJ, Masztal A, Aldridge KE, et al. Association of Atopobium vaginae, a recently described metronidazole resistant anaerobe, with bacterial vaginosis. BMC Infect Dis. 2004;4:5. doi: 10.1186/1471-2334-4-5.
  • Hardy L, Jespers V, Abdellati S, De Baetselier I, et al. A fruitful alliance: the synergy between Atopobium vaginae and Gardnerella vaginalis in bacterial vaginosis-associated biofilm. Sex Transm Infect. 2016. pii: sextrans-2015-052475. doi: 10.1136/sextrans-2015-052475.
  • Wade WG. The Genus Eubacterium and Related Genera. Procaryotes. 2006;4:823-35. doi: 10.1007/0-387-30744-3_28.
  • Srinivasan S, Morgan MT, Fiedler TL, et al. Metabolic signatures of bacterial vaginosis. MBio. 2015;6(2). pii: e00204-15. doi: 10.1128/mBio.00204-15.

Supplementary files

There are no supplementary files to display.


Abstract - 77

PDF (Russian) - 77

Copyright (c) 2017 ECO-vector LLC

Creative Commons License
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.