Melatonin in the treatment of perinatal pathology

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The review presents the results of studies that have shown the effectiveness of melatonin use in the treatment of perinatal pathology based on oxidative stress and associated systemic inflammation with excessive production of pro-inflammatory cytokines. It is shown that the lack or absence of the circadian rhythm of epiphyseal maternal melatonin plays a key role in the development of oxidative stress in the single mother-placenta-fetus functional system. The article summarizes the results of experimental studies that reveal the mechanisms of melatonin influence (antioxidant, anti-inflammatory, immunomodulating), which provide the protection of the fetus from damage caused by oxidative stress and inflammation in pregnancy complications. The article presents the results of the use of melatonin in full-term and premature infants in addition to standard therapy of brain damage as a result of hypoxia-ischemia and asphyxia, respiratory distress syndrome, sepsis, and necrotizing enterocolitis. Currently ongoing international studies should determine the dose, duration, safety profile, short-term and long-term effects of melatonin in newborns of various gestational ages for its inclusion in treatment protocols for perinatal pathology.

Full Text

Restricted Access

About the authors

Inna I. Evsyukova

The Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: eevs@yandex.ru
ORCID iD: 0000-0003-4456-2198
SPIN-code: 4444-4567

MD, Dr. Sci. (Med.), Professor

Russian Federation, 3, Mendeleevskaya Line, Saint Petersburg, 199034

References

  1. Matveeva EA, Filkina OM, Malyshina AI, et al. Disability infants born weighing less than 1500. Rossijskij vestnik perinatologii i pediatrii. 2017;62(3):66−70. (In Russ.). doi: 10.21508/1027-4065-2017-62-3-66-70
  2. Zavadenko NN, Davydova LA. Prematurity and low birth weight as risk factors for neurodevelopmental disorders in children. Rossijskij vestnik perinatologii i pediatrii. 2018;63(4):43−51. (In Russ.). doi: 10.21508/1037-4065-2018-63-4-43-51
  3. Bellido-Gonzalez M, Dıaz-Lopez MA, Lopez-Criado S, Maldonado-Lozano J. Cognitive functioning and academic achievement in children aged 6–8 years, born at term after intrauterine growth restriction and fetal cerebral redistribution. J Pediatr Psychol. 2017;42(3):345–354. doi: 10.1093/jpepsy/jsw060
  4. van der Pal S, Steinhof M, Grevinga M, et al. Quality of life of adults born very preterm or very low birth weight: A systematic review. Acta Paediatr. 2020;109(10):1974−1988. doi: 10.1111/apa.15249. doi: 10.1111/apa.15249
  5. DuBow A, Mourot A, Tourjman SV. Chiari malformation and attention deficit hyperactivity disorder. Case Rep Med. 2020;2020:2694956. doi: 10.1155/2020/2694956
  6. Gauda EB, McLemore GL. Premature birth, homeostatic plasticity and respiratory consequences of inflammation. Resp Physiol Neurobiol. 2020;274:103337. doi: 10.1016/j.resp.2019.103337
  7. Ivanov DO, Evsyukova II, Mazzoccoli G, et al. The role of prenatal melatonin in the regulation of childhood obesity. Biology. 2020;9(4):72. doi: 10.3390/biology9040072
  8. Perez M, Robbins ME, Revhaugc C, Saugstad OD. Oxygen radical disease in the newborn, revisited: oxidative stress and disease in the newborn period. Free Radic Biol Med. 2019;142:61–72. doi: 10.1016/j.freeradbiomed.2019.03.035
  9. McAdams RM, Juul SE. The role of cytokines and inflammatory cells in perinatal brain injury. Neurol Res Int. 2012;2012:561494. doi: 10.1155/2012/561494
  10. Vasiljevic B, Maglajlic-Djukic S, Gojnic M, et al. New insights into the pathogenesis of perinatal hypoxic-ischemic brain injury. Pediatr Int. 2011;53(4):454–462. doi: 10.1111/j.1442-200X.2010.03290.x
  11. Al-Gubory KH, Fowler PA, Garrel C. The roles of cellular reactive oxygen species, oxidative stress and antioxidants in pregnancy outcomes. Intern J Biochem Cell Biol. 2010;42:1634−1650. doi: 10.1016/j,biocel.2010.06.001
  12. Perrone S, Santacroce A, Picardi A, Buonocore G. Fetal programming and early identification of newborns at high risk of free radical-mediated diseases. World J Clin Pediatr. 2016;5(2):172−181. doi: 10.5409/wjcp.v5.i2.172
  13. Aulamazyan EK, Evsyukova II, Yarmolinskaya MI. The role of melatonin in development of gestational diabetesmellitus. Journal of Obstetrics and Women’s Diseases. 2018;67(1):85−91. (In Russ.). doi: 10.17816/JOWD67185-91
  14. Forrestel AC, Miedlich SU, Yurcheshen M, et al. Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia. 2017;60(5):808−822. doi: 10.1007/s00125-016-4175-1
  15. Bouchlariotou S, Liakopoulos V, Giannopoulou M, et al. Melatonin secretion is impaired in women with preeclampsia and abnormal circadian blood pressure rhythm. Ren Fail. 2014;36(7):1001−1007. doi: 10.3109/0886022X.2014.926216
  16. Nehme PA, Amaral FG, Middleton B, et al. Melatonin profiles during the third trimester of pregnancy and health status in the offspring among day and night workers: A case series. Neurobiol Sleep Circadian Rhythms. 2019;6:70−76. doi: 10.1016/j.nbscr.2019.04.001
  17. Hsu C-N, Tain Y-L. Light and circadian signaling pathway in pregnancy: Programming of adult health and disease. Int J Mol Sci. 2020;21:2232. doi: 10.3390/ijms21062232
  18. Richter HJ, Hansell JA, Raut S, Glussani DA. Melatonin improves placental efficiency and birth weight increases the placental expression of antioxidant enzymes in undernourished pregnancy. J Pineal Res. 2009;46(4):357−364. doi: 10.1111/j,1600-079X.2009.00671x
  19. Reiter RJ, Rosales-Corral S, Tan DX, et al. Melatonin as a mitochondria-targeted antioxidant: one of evolution’s best ideas. Cell Mol Life Sci. 2017;74(21):3863−3881. doi: 10.1007/s00018-017-2609-7
  20. Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA. Melatonin and stabile circadian rhythms optimize maternal, placental and fetal physiology. Hum Reprod Update. 2014;20(2):293−307. doi: 10.1016/j.fertnstert.2014.06.014
  21. Galano A, Tan DX, Reiter RJ. Melatonin: A versatile protector against oxidative DNA damage. Molecules. 2018;23(3):530. doi: 10.3390/molecules23030530
  22. Evsyukova II, Kvetnoy IM. Melatonin andcircadian rhythms in the system “mother-placenta-fetus”. Molekuljarnaja medicina. 2018;16(6):9−13. (In Russ.). doi: 10.29296/24999490-2018-06-02
  23. Tain YL, Huang LT., Hsu CN. Developntal programming of adult disease: reprogramming by melatonin? Nt J Mol Sci. 2017;18:426−437. DOI: 10/3390/ijms18020426
  24. Gitto E, Marseglia L, Manti S, et al. Protective role of melatonin in neonatal diseases. Oxid Med Cell Longev. 2013;2013:980374. doi: 10.1155/2013/980374
  25. Kennaway DJ, Flanagan DE, Moore V, et al. The impact of fetal size and length of gestation on 6-sulphatoxymelatonin excretion in adult life. J Pineal Res. 2001;30(3):188−192. doi: 10.1034/j.1600-079x.2001.300308.x
  26. Tauman R, Zisapel N, Laudon M, et al. Melatonin production in infants. Pediatr Neurol. 2002;26(5):379−382. doi: 10.1016/s0887-8994(01)00417-9
  27. Biran V, Decobert F, Bednarek N, et al. Melatonin levels in preterm and term infants and their mothers. Int J Mol Sci. 2019;20(9):2077. doi: 10.3390/ijms20092077
  28. D’Angelo G, Chimenz R, Reiter RJ, Gitto E. Use of melatonin in oxidative stress related neonatal diseases. Antioxidants (Basel). 2020;9(6):477. doi: 10.3390/antiox9060477
  29. Aversa S, Pellegrino S, Barberi I, et al. Potential utility of melatonin as an antioxidant during pregnancy and in the perinatal period. J Matern Fetal Neonatal Med. 2012;25(3):207−221. doi: 10.3109/14767058.2011.573827
  30. Alonso-Alconada D, Alvarez A, Arteaga O, et al. Neuroprotective effect of melatonin: a novel therapy against perinatal hypoxia-ischemia. Int J Mol Sci. 2013;14(5):9379–9395. doi: 10.3390/ijms14059379
  31. Biran V, Phan Duy A, Decobert F, et al. Is melatonin ready to be used in preterm infants as a neuroprotectant? Dev Med Child Neurol. 2014;56(8):717−723. doi: 10.1111/dmcn.12415
  32. Colella M, Biran V, Baud O. Melatonin and the newborn brain. Early Human Development. 2016;102:1−3. doi: 10.1016/j.earlhudev.2016.09.001
  33. Paprocka J, Kijonka M, Rzepka B, Sokół M. Melatonin in hypoxic-ischemic brain injury in term and preterm babies. Int J Endocrinol. 2019;2019:9626715. doi: 10.1155/2019/9626715
  34. Hassell KJ, Ezzati M, Alonso-Alconada D, et al. New horizons for newborn brain protection: Enhancing endogenous neuroprotection. Arch Dis Child Fetal Neonatal Ed. 2015;100(6):F541–552. doi: 10.1136/archdischild-2014-306284
  35. Hendaus MA, Jomha FA, Alhammadi AH. Melatonin in the management of perinatal hypoxic-ischemic encephalopathy: light at the end of the tunnel? Neuropsychiatr Dis Treat. 2016;12:2473–2479. doi: 10.2147/NDT. S115533
  36. Wang Q, Lv H, Lu L, et al. Neonatal hypoxic-ischemic encephalopathy: emerging therapeutic strategies based on pathophysiologic phases of the injury. J Matern Fetal Neonatal Med. 2019;32(21):3685−3692. doi: 10.1080/14767058.2018.1468881
  37. Lawn JE, Kerber K, Enweronu-Laryea C, Cousens S. 3.6 million neonatal deaths-what is progressing and what is not? Semin Perinatol. 2010;34(6):371–386. doi: 10.1053/j.semperi.2010.09.011
  38. Cotten SM, Shankaran S. Hypothermia for hypoxic-ischemic encephalopathy. Expert Rev Obstet Gynecol. 2010;5(2):227−239. doi: 10.1586/eog.10.7
  39. Jacobs SE, Berg M, Hunt R, et al. Cooling for newborns with hypoxic ischemic encephalopathy. Cochrane Database Syst Rev. 2013;2013(1):CD003311. doi: 10.1002/14651858.CD003311.pub3
  40. Robertson NJ, Martinello K, Lingam I, et al. Melatonin as an adjunct to therapeutic hypothermia in a piglet model of neonatal encephalopathy: A translational study. Neurobiol Dis. 2019;121:240–251. doi: 10.1016/j.nbd.2018.10.004
  41. Aly Н, Elmahdy H, El-Dib M, et al. Melatonin use for neuroprotection in perinatal asphyxia: A randomized controlled pilot study. J Perinatol. 2015;35(3):186−191. doi: 10.1038/jp.2014.186
  42. Balduini W, Weiss MD, Carloni S, et al. Melatonin pharmacokinetics and dose extrapolation after enteral infusion n neonates subjected to hypothermia. J Pineal Res. 2019;66(4):e12565. doi: 10.1111/jpi.12565
  43. Fulia F, Gitto E, Cuzzocrea S, et al. Increased levels of malondialdehyde and nitrite/nitrate in the blood of asphyxiated newborns: reduction by melatonin. J Pineal Res. 2001;31(4):343−349. doi: 10.1034/j.1600-079x.2001.310409.x
  44. Ahmad QM, Chishti AL, Waseem N. Role of melatonin in management of hypoxic ischemic encephalopathy in newborns: a randomized control trial. J Pak Med Assoc. 2018;68(8):1233–1237.
  45. Merchant N, Azzopardi DV, Hawwa AF, et al. Pharmacokinetics of melatonin in preterm infants. Br J Clin Pharmacol. 2013;76(5):725−733. doi: 10.1111/bcp.12092
  46. Carloni S, Proietti F, Rocchi M, et al. Melatonin pharmacokinetics following oral administration in preterm neonates. Molecules. 2017;22(12):2115. doi: 10.3390/molecules22122115
  47. Gitto E, Reiter RJ, Amodio A, et al. Early indicators of chronic lung disease in Preterm infants with respiratory distress syndrome and their inhibition by melatonin. J Pineal Res. 2004;36(4):250−255. doi: 10.1111/j.1600-079X.2004.00124.x
  48. Aversa S, Marseglia L, Manti S, et al. Ventilation strategies for preventing oxidative stress-induced injury in preterm infants with respiratory disease: An update. Paediatr Respir Rev. 2016;17:71–79. doi: 10.1016/j.prrv.2015.08.015
  49. Gitto E, Reiter RJ, Sabatino G, et al. Correlation among cytokines, bronchopulmonary dysplasia and modality of ventilation in preterm newborns: Improvement with melatonin treatment. J Pineal Res. 2005;39(3):287−293. doi: 10.1111/j.1600-079X.2005.00251.x
  50. Suleymanoglu S, Cekmez F, Cetinkaya M, et al. Protective effects of melatonin therapy in model for neonatal hyperoxic lung injury. Altern Ther Med. 2014;20(5):24−29.
  51. de Souza DC, Brandão MB, Piva JP. From the international pediatric sepsis conference 2005 to the Sepsis-3 consensus. Rev Bras Ter Intensiva. 2018;30(1):1−5. doi: 10.5935/0103-507X.20180005
  52. Gitto E, Karbownik M, Reiter RJ, et al. Effects of melatonin treatment in septic newborns. Pediatr Res. 2001;50(6):756–760. doi: 10.1203/00006450-200112000-00021
  53. El Gendy FM ,El Hawy MA, Hassan MG. Beneficial effect of melatonin in the treatment of neonatal sepsis. J Matern Fetal Neonatal Med. 2018;31(17):2299−2303. doi: 10.1080/14767058.2017.1342794
  54. EL Frargy M, EL Sharkawy HM, Attia GF. Use of melatonin as an adjuvant therapy in neonatal sepsis. J Neonatal Perinatal Med. 2015;8(3):227−232. doi: 10.3233/NPM-15814072
  55. Henderson R, Kim S, Lee E. Use of melatonin as adjunctive therapy in neonatal sepsis: A systematic review and meta-analysis complement. Ther Med. 2018;39:131−136. doi: 10.1016/j.ctim.2018.06.002
  56. El Kabbany ZA, El Farghali OG, Khafagy SM, et al. Melatonin as an adjuvant therapy in preterm infants with neonatal sepsis, randomized trial. Egypt Pediatr Assoc Gazette. 2020;68:2. doi: 10.1186/s43054-019-0013-7
  57. Perrone S, Tataranno ML, Santacroce A, et al. The role of oxidative stress on necrotizing enterocolitis in very low birth weight infants. Curr Pediatr Rev Actions. 2014;10(3):202−207.
  58. Aydemir С, Dilli D, Uras N, et al. Total oxidant status and oxidative stress are increased in infants with necrotizing enterocolitis. J Pediatr Surg Actions. 2011;46(11):2096−2100. doi: 10.1016/j.jpedsurg.2011.06.032
  59. Marseglia L, D’Angelo G, Manti S, et al. Oxidative stress-mediated damage in newborns with necrotizing enterocolitis: A possible role of melatonin. Am J Perinatol. 2015;32(10):905−909. doi: 10.1055/s-0035-1547328
  60. Gitto E, Aversa S, Salpietro CD, et al. Pain in neonatal intensive care: Role of melatonin as an analgesic antioxidant. J Pineal Res. 2012;52(3):291−295. doi: 10.1111/j.1600-079X.2011.00941
  61. Gitto E, Romeo C, Reiter RJ, et al. Melatonin reduces oxidative stress in surgical neonates. J Pediatr Surg. 2004;39(2):184−189. doi: 10.1016/j.jpedsurg.2003.10.003
  62. Marseglia L, Manti S, D’Angelo G, et al. Melatonin for the newborn. J Pediatr Neonat Individ Med. 2014;3(2):e030232. doi: 10.7363/030232
  63. Garg BD. Melatonin as a neuroprotective agent in hypoxic ischemic encephalopathy: Is it beneficial. EC Paediatrics. 2019;8(1):53−60. [cited 3 Nov 2021] Available from: https://www.researchgate.net/publication/330106948_EC_Paediatrics_Review_Article_Melatonin_as_a_Neuroprotective_Agent_in_Hypoxic_Ischemic_Encephalopathy_Is_it_Beneficial
  64. Tarocco A, Caroccia N, Morrciano G, et al. Melatonin as a master regulator of cell death and inflammation: molecular mechanisms and clinical implications for newborn care. Cell Death Disease. 2019;10(4):317. doi: 10.1038/s41419-019-1556-7

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies