The role of proteomics in the modern diagnosis of cervical cancer

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Cervical cancer is a leading global health problem and the second most common form of cancer in women living in developing countries. Despite the available methods of diagnosis and treatment, cervical cancer is still the cause of a large number of deaths among vulnerable groups of the female population, which makes further research relevant. The aim of this study was to summarize new technological developments and scientific information about proteomics, which will allow for deepening the understanding of the pathogenesis of cervical cancer and developing new methods of diagnosis and treatment of this pathology. Recent achievements in the field of analytical research methods and bioinformatics provide a wide range of alternatives in the field of proteomic research. To date, proteomic analysis can be performed on almost any biological sample (tumor tissue, blood, urine, saliva, vaginal secretions). Each type of biological sample represents a potential source of diagnostic and prognostic biomarkers, as well as potential targets for therapy. The main limitation of proteomic studies aimed at finding potential biomarkers of the disease is the high variability of the results depending on the specific laboratory. There is variability in concentrations and even in the type of biomarker identified, even though research teams are working with the same samples.

Full Text

Restricted Access

About the authors

Aida U. Hamadyanova

Bashkir State Medical University

Author for correspondence.
Email: sagidullin12@bk.ru
ORCID iD: 0000-0001-6197-195X

Cand. Sci. (Med.), Assistant Professor

Russian Federation, Ufa

Azalia S. Sultanmuratova

Bashkir State Medical University

Email: azalka.sultanmuratova@mail.ru
ORCID iD: 0000-0003-1497-8475
Russian Federation, Ufa

Aliya Kh. Disbiyanova

Bashkir State Medical University

Email: aliyadis@yandex.ru
ORCID iD: 0000-0002-1044-2190
Russian Federation, Ufa

Svetlana N. Akhmadeyeva

Bashkir State Medical University

Email: akhmadeva98@bk.ru
ORCID iD: 0000-0003-2363-7680
Russian Federation, Ufa

Nikita O. Yadgarov

Bashkir State Medical University

Email: stemm1001@gmail.com
ORCID iD: 0000-0002-4229-4313
Russian Federation, Ufa

Liana E. Burangulova

Bashkir State Medical University

Email: liandoklianchuk@gmail.com
ORCID iD: 0000-0002-2357-781X
Russian Federation, Ufa

References

  1. Zhukova AB. Squamous intraepithelial lesions of the cervix: a modern view of etiology, pathogenesis, and diagnosis. Journal of obstetrics and women’s diseases. 2019;68(6):87–98. (In Russ.). doi: 10.17816/JOWD68687-98
  2. Pestrikova TY, Ismaylova AF, Kiselev SN. Cervical cancer: monitoring of the main indicators characterizing this pathology in Khabarovsk Krai (2009–2019). Gynecology. 2021;23(2):155–160. (In Russ.). doi: 10.26442/20795696.2021.2.200775
  3. Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–249. doi: 10.3322/caac.21660
  4. Hu Z, Ma D. The precision prevention and therapy of HPV-related cervical cancer: new concepts and clinical implications. Cancer Med. 2018;7(10):5217–5236. doi: 10.1002/cam4.1501
  5. Wang D, Eraslan B, Wieland T, et al. A deep proteome and transcriptome abundance atlas of 29 healthy human tissues. Mol Syst Biol. 2019;15(2):e8503. doi: 10.15252/msb.20188503
  6. Rao VS, Srinivas K, Sujini GN, Kumar GN. Protein-protein interaction detection: methods and analysis. Int J Proteomics. 2014;2014:147648. doi: 10.1155/2014/147648
  7. Droit A, Poirier GG, Hunter JM. Experimental and bioinformatic approaches for interrogating protein-protein interactions to determine protein function. J Mol Endocrinol. 2005;34(2):263–280. doi: 10.1677/jme.1.01693
  8. Pascovici D, Wu JX, McKay MJ, et al. Clinically relevant post-translational modification analyses-maturing workflows and bioinformatics tools. Int J Mol Sci. 2018;20(1):16. doi: 10.3390/ijms20010016
  9. O’Farrell PH. High resolution two-dimensional electrophoresis of proteins. J Biol Chem. 1975;250(10):4007–4021.
  10. Folch J, Lees M, Sloane Stanley GH. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957;226(1):497–509.
  11. Chen C, Hou J, Tanner JJ, Cheng J. Bioinformatics methods for mass spectrometry-based proteomics data analysis. Int J Mol Sci. 2020;21(8):2873. doi: 10.3390/ijms21082873
  12. Perkins RC. Making the case for functional proteomics. Methods Mol Biol. 2019;1871:1–40. doi: 10.1007/978-1-4939-8814-3_1
  13. Shin J, Lee W, Lee W. Structural proteomics by NMR spectroscopy. Expert Rev Proteomics. 2008;5(4):589–601. doi: 10.1586/14789450.5.4.589
  14. Boersema PJ, Kahraman A, Picotti P. Proteomics beyond large-scale protein expression analysis. Curr Opin Biotechnol. 2015;34:162–170. doi: 10.1016/j.copbio.2015.01.005
  15. Banach P, Suchy W, Dereziński P, et al. Mass spectrometry as a tool for biomarkers searching in gynecological oncology. Biomed Pharmacother. 2017;92:836–842. doi: 10.1016/j.biopha.2017.05.146
  16. Al-Wajeeh AS, Salhimi SM, Al-Mansoub MA, et al. Comparative proteomic analysis of different stages of breast cancer tissues using ultra high performance liquid chromatography tandem mass spectrometer. PLoS One. 2020;15(1):e0227404. doi: 10.1371/journal.pone.0227404
  17. Aslam B, Basit M, Nisar MA, et al. Proteomics: Technologies and their applications. J Chromatogr Sci. 2017;55(2):182–196. doi: 10.1093/chromsci/bmw167
  18. Boylan KLM, Afiuni-Zadeh S, Geller MA, et al. Evaluation of the potential of Pap test fluid and cervical swabs to serve as clinical diagnostic biospecimens for the detection of ovarian cancer by mass spectrometry-based proteomics. Clin Proteomics. 2021;18(1):4. doi: 10.1186/s12014-020-09309-3
  19. Chen G, Chen J, Liu H, et al. Comprehensive identification and characterization of human secretome based on integrative proteomic and transcriptomic data. Front Cell Dev Biol. 2019;7:299. doi: 10.3389/fcell.2019.00299
  20. Montaner J, Ramiro L, Simats A, et al. Multilevel omics for the discovery of biomarkers and therapeutic targets for stroke. Nat Rev Neurol. 2020;16(5):247–264. doi: 10.1038/s41582-020-0350-6
  21. Huang Z, Ma L, Huang C, et al. Proteomic profiling of human plasma for cancer biomarker discovery. Proteomics. 2017;17(6). doi: 10.1002/pmic.201600240
  22. Ren AH, Fiala CA, Diamandis EP, Kulasingam V. Pitfalls in cancer biomarker discovery and validation with emphasis on circulating tumor DNA. Cancer Epidemiol Biomarkers Prev. 2020;29(12):2568–2574. doi: 10.1158/1055-9965.EPI-20-0074
  23. Sobsey CA, Ibrahim S, Richard VR, et al. Targeted and untargeted proteomics approaches in biomarker development. Proteomics. 2020;20(9):e1900029. doi: 10.1002/pmic.201900029
  24. Higareda-Almaraz JC, Enríquez-Gasca Mdel R, Hernández-Ortiz M, et al. Proteomic patterns of cervical cancer cell lines, a network perspective. BMC Syst Biol. 2011;5:96. doi: 10.1186/1752-0509-5-96
  25. Pappa KI, Christou P, Xholi A, et al. Membrane proteomics of cervical cancer cell lines reveal insights on the process of cervical carcinogenesis. Int J Oncol. 2018;53(5):2111–2122. doi: 10.3892/ijo.2018.4518
  26. Xia C, Yang F, He Z, Cai Y. iTRAQ-based quantitative proteomic analysis of the inhibition of cervical cancer cell invasion and migration by metformin. Biomed Pharmacother. 2020;123:109762. doi: 10.1016/j.biopha.2019.109762
  27. Muñoz N, Bosch FX, de Sanjosé S, et al.; International Agency for Research on Cancer Multicenter Cervical Cancer Study Group. Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med. 2003;348(6):518–527. doi: 10.1056/NEJMoa021641
  28. Yang J, Chen L, Kong X, et al. Analysis of tumor suppressor genes based on gene ontology and the KEGG pathway. PLoS One. 2014;9(9):e107202. doi: 10.1371/journal.pone.0107202
  29. Su PH, Lin YW, Huang RL, et al. Epigenetic silencing of PTPRR activates MAPK signaling, promotes metastasis and serves as a biomarker of invasive cervical cancer. Oncogene. 2013;32(1):15–26. doi: 10.1038/onc.2012.29
  30. Ma Z, Chen J, Luan T, et al. Proteomic analysis of human cervical adenocarcinoma mucus to identify potential protein biomarkers. PeerJ. 2020;8:e9527. doi: 10.7717/peerj.9527
  31. Bae SM, Min HJ, Ding GH, et al. Protein expression profile using two-dimensional gel analysis in squamous cervical cancer patients. Cancer Res Treat. 2006;38(2):99–107. doi: 10.4143/crt.2006.38.2.99
  32. Gu Y, Wu SL, Meyer JL, et al. Proteomic analysis of high-grade dysplastic cervical cells obtained from ThinPrep slides using laser capture microdissection and mass spectrometry. J Proteome Res. 2007;6(11):4256–4268. doi: 10.1021/pr070319j
  33. Zhu X, Lv J, Yu L, et al. Proteomic identification of differentially-expressed proteins in squamous cervical cancer. Gynecol Oncol. 2009;112(1):248–256. doi: 10.1016/j.ygyno.2008.09.045
  34. Zhao Q, He Y, Wang XL, et al. Differentially expressed proteins among normal cervix, cervical intraepithelial neoplasia and cervical squamous cell carcinoma. Clin Transl Oncol. 2015;17(8):620–631. doi: 10.1007/s12094-015-1287-x
  35. Serafín-Higuera I, Garibay-Cerdenares OL, Illades-Aguiar B, et al. Differential proteins among normal cervix cells and cervical cancer cells with HPV-16 infection, through mass spectrometry-based Proteomics (2D-DIGE) in women from Southern México. Proteome Sci. 2016;14(1):10. doi: 10.1186/s12953-016-0099-4
  36. Jin Y, Kim SC, Kim HJ, et al. Use of protein-based biomarkers of exfoliated cervical cells for primary screening of cervical cancer. Arch Pharm Res. 2018;41(4):438–449. doi: 10.1007/s12272-018-1015-5
  37. Güzel C, Govorukhina NI, Wisman GBA, et al. Proteomic alterations in early stage cervical cancer. Oncotarget. 2018;9(26):18128–18147. doi: 10.18632/oncotarget.24773
  38. Hwang YJ, Lee SP, Kim SY, et al. Expression of heat shock protein 60 kDa is upregulated in cervical cancer. Yonsei Med J. 2009;50(3):399–406. doi: 10.3349/ymj.2009.50.3.399
  39. Choi CH, Chung JY, Kang JH, et al. Chemoradiotherapy response prediction model by proteomic expressional profiling in patients with locally advanced cervical cancer. Gynecol Oncol. 2020;157(2):437–443. doi: 10.1016/j.ygyno.2020.02.017
  40. Martínez-Rodríguez F, Limones-González JE, Mendoza-Almanza B, et al. Understanding cervical cancer through proteomics. Cells. 2021;10(8):1854. doi: 10.3390/cells10081854
  41. Boichenko AP, Govorukhina N, Klip HG, et al. A panel of regulated proteins in serum from patients with cervical intraepithelial neoplasia and cervical cancer. J Proteome Res. 2014;13(11):4995–5007. doi: 10.1021/pr500601w
  42. Guo X, Hao Y, Kamilijiang M, et al. Potential predictive plasma biomarkers for cervical cancer by 2D-DIGE proteomics and Ingenuity Pathway Analysis. Tumour Biol. 2015;36(3):1711–1720. doi: 10.1007/s13277-014-2772-5

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2022 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies