Determination of viral load and DNA status of human papillomavirus type 16 by real-time PCR

Cover Page


Cite item

Full Text

Abstract

Integration of HPV DNA into the host genome is considered to be a key event in malignant transformation. This process results in disruption of El and E2 HPV genes, which is followed by up-regulation of HPV E6 and E7 oncogenes expression. It has been shown in this study that HPV type 16 is the most prevalent high-risk type in women with pathology of the cervix, with the frequency of HPV type 16 detection increasing along with the degree of neoplasia. With the use of real-time polymerase chain reaction the number of HPV type 16 DNA copies and its state were determined in clinical specimens. It was shown that the degree of the disease is associated with viral load and HPV physical state

Full Text

Введение

Одним из важнейших достижений в области изучения рака является установление этиологической роли некоторых типов вируса папилломы человека (ВПЧ) в развитии рака шейки матки (РШМ). За последние годы накоплено большое количество эпидемиологических и молекулярно-биологических данных, подтверждающих связь между опухолевым процессом и наличием вирусного генетического материала.

РШМ является очень редким следствием папилломавирусной инфекции (ПВИ), и даже в случаях тяжелой дисплазии может происходить спонтанная регрессия заболевания. В этой связи выработка критериев, с помощью которых можно распознать клинически значимую инфекцию, способную развиться в заболевание, представляется вопросом первостепенной важности. В качестве таких критериев в настоящее время рассматриваются:

  • инфицирование онкогенными типами и молекулярными вариантами вируса;
  • персистенцию папилломавирусной инфекции;
  • высокую вирусную нагрузку;
  • инфицирование несколькими онкогенными типами папилломавируса;
  • интеграцию вирусной ДНК в клеточный геном.

В настоящее время охарактеризовано более 80 типов ВПЧ и показано, что около 40 типов могут вызывать заболевания аногенитального тракта. Типы ВПЧ, инфицирующие слизистые оболочки аногенитального тракта, разделяют на группы низкого и высокого онкогенного риска. Самым распространенным типом ВПЧ высокого онкогенного риска является 16 тип. Его обнаруживают более чем в 50% случаев РШМ [10].

Ключевым событием в злокачественной трансформации эпителиальных клеток считается интеграция ДНК вируса в ДНК клетки- хозяина. Процесс интеграции сопровождается разрушением открытых рамок считывания генов Е1 и Е2, продукты которых участвуют в регуляции экспрессии онкогенных белков ВПЧ Е6 и Е7 [6]. Как правило, на ранних стадиях опухолевого процесса вирусная ДНК выявляется в эписомной форме, тогда как на поздних стадиях — в интегрированной [7]. Недавно был предложен высокочувствительный метод определения физического статуса ВПЧ с применением ПЦР в реальном времени, с помощью которого было показано, что интеграция вируса может происходить на самых ранних стадиях заболевания, когда еще нет цитологических доказательств неопластических изменений [11, 12]. ПЦР в реальном времени позволяет с высокой точностью определить как вирусную нагрузку, так и статус вирусной ДНК — два параметра, которые наряду с типом ВПЧ рассматриваются в настоящее время в качестве критериев,

позволяющих прогнозировать течение ПВИ и ассоциированных с нею злокачественных изменений. Использование метода ПЦР в реальном времени для определения статуса вирусной ДНК основывается на следующих допущениях:

  • при интегрированной форме ДНК ВПЧ ген Е2 не обнаруживается;
  • при эписомной форме вируса количество копий гена Е2 равно количеству копий гена Е6;
  • если в клеточный геном интегрирована только часть вируса, число копий гена Е2 меньше числа копий гена Е6.

Несмотря на то что интеграция ДНК ВПЧ в клеточный геном рассматривается многими авторами как ключевой фактор риска неопластической прогрессии, остается еще много вопросов относительно биологической и клинической значимости явления интеграции, а также распространенности интегрированных форм вируса, особенно в преинвазивных повреждениях.

Целью данного исследования явилось определение вирусной нагрузки и статуса ДНК ВПЧ 16 типа с использованием ПЦР в реальном времени и оценка прогностических возможностей этих факторов. Для достижения поставленной цели планировалось протестировать клинические пробы, полученные от пациенток с патологией шейки матки, с применением типоспецифических праймеров и выявить пробы, содержащие ВПЧ 16 типа, затем определить вирусную нагрузку и статус вирусной ДНК и проанализировать полученные результаты в свете данных цитологических исследований.

Материалы и методы

Клинический материал. Клинический материал был получен от пациенток НИИ акушерства и гинекологии им. Д.О. Отта РАМН и НИИ онкологии им. Н.Н. Петрова РАМН. Соскобы эпителия цервикального канала собирали дакроновыми щеточками в пробирки «Эппендорф» объемом 1,5 мл, содержащие 300 мкл транспортной среды (ЦНИИ эпидемиологии, Москва). Одновременно с материалом для исследования на ВПЧ брали материал для цитологического исследования.

Цитологические исследования. Цитологические исследования соскобов эпителия цервикального канала проводились в лабораториях патоморфологии НИИ акушерства и гинекологии и НИИ онкологии. Для представления результатов цитологических исследований использовали следующие обозначения:

  • ЦИН I (цервикальная интраэпителиальная неоплазия I степени или легкая дисплазия);
  • ЦИН II (цервикальная интраэпителиальная неоплазия II степени или умеренная дисплазия);
  • ЦИН III (цервикальная интраэпителиальная неоплазия III степени или карцинома in situ);
  • цитологически нормальные мазки определяли как ЦН.

Выделение ДНК. Выделение ДНК из клинических проб проводили с использованием тест- системы «ДНК-сорб-А» (ЦНИИ Эпидемиологии, Москва) в соответствии с инструкцией производителя.

Полимеразная цепная реакция. Цервикальные образцы анализировали с помощью общих праймеров GP5+/GP6+, фланкирующих фрагмент гена L1 ВПЧ [14]. Реакцию проводили в реакционном объеме 50 мкл, содержащем 50 мМ КС1, 10 мМ Tris-HCl pH 8,3, каждого дезоксинуклеозидтрифосфата 200 мкМ, 3,5 мМ MgCl2, 1 единицу Taq-полимеразы, 50 пмол каждого из праймеров GP5+(5’-TTTGTTACTGTGGTAGATACTAC-3’) и GР6+(3’-CTTATACTAAATGTCAAATAAAAAG-5’) и 10 мкл образца ДНК. Амплификацию осуществляли в программируемом термостате Тер- цик (ДНК-технология, Москва) при следующем температурном режиме: 94°С 4 мин; 94°С 1 мин, 40°С 2 мин, 72°С 1,5 мин (40 циклов); 72°С 4 мин. Анализ продуктов реакции проводили в 1,5% агарозном геле, который окрашивали бромистым этидием (0,5 мкг/мл); в ультрафиолетовом свете наблюдали амплифицированные специфические фрагменты длиной 150 п.о.

Типирование ВПЧ. Для выявления и дифференциации ДНК вирусов папилломы человека высокого канцерогенного риска (16, 18, 31, 33, 35, 39, 45, 52, 56, 58, 59, 66) в соскобах эпителия цервикального канала использовали тест- системы «АмплиСенс ВПЧ высокого риска» (ЦНИИ эпидемиологии, Москва). Анализ проводили в полном соответствии с инструкцией производителя.

Получение стандарта для количественной ПЦР в реальном времени. ВПЧ 16 типа, клонированный в плазмиду pBR322, был любезно предоставлен доктором Е.М. de Villiers (Центр изучения рака, Университет Гейдельберга, Германия). Приготовление компетентных клеток Escherichia coli штамм JM107 и трансформацию их плазмидой pBR322, содержащей геном ВПЧ 16 типа, проводили в соответствии с методикой, описанной Н. Inoue [5]. Для выделения плазмидной ДНК использовали методику, предложенную Lee S.Y. и соавт. [8]. Концентрацию ДНК измеряли на спектрофотометре Smart Spec 3000 (Bio-Rad, USA).

Полимеразная цепная реакция в реальном времени. Полимеразную цепную реакцию в реальном времени выполняли в термоциклере с оптическим блоком iQ iCycler (Bio-Rad, USA) при следующем температурном режиме: 2 мин при 50°С, 10 мин при 95°С и 40 двухшаговых циклов 15 сек при 95°С и 1 мин при 60°С. Реакцию проводили в объеме 25 мкл, содержащем 10 мМ Tris-HCl pH 8,3, каждого дезоксинуклеозидтрифосфата 200 мкМ, 50 мМ КС1, 3 мМ MgCl2, 1 единицу Taq-полимеразы, 15 пмол каждого праймера, 5 пмол зонда и 5 мкл ДНК. Праймеры и зонды для амплификации фрагментов ранних генов Е2 и Е6 [12] представлены в табл. 1.

 

Таблица 1. Праймеры и зонды для ПЦР в реальном времени

Название

Последовательность (5’>3')

Праймер 1, 16E2F

AACGAAGTATCCTCTCCCTGAAATTATTAG

Праймер 2, 16E2R

CCAAGGCGACGGCTTTG

Зонд 16E2PRO

(FAM)-CACCCGCCGCGACCCATA-(TAMRA)

Праймер 1, 16E6F

GAGAACTGCAATGTTTCAGGACC

Праймер 2, 16E6R

TGTATAGTTGTTTGCAGCTCTGTGC

Зонд 16E6PRO

(FAM)- CAGG AGCG ACCCAGAAAGTTACCACAGTT- (TAM RA)

 

Стандартные кривые были получены амплификацией серии последовательных разбавлений от 5х107 до 5x102 стандарта. Для этих разбавлений была показана линейная зависимость логарифма копий стандарта от количества циклов. Все реакции проводили в двух пробирках. Результаты были пересчитаны на 50 нг клеточной ДНК.

Статистическая обработка данных. Оценку ассоциации стадии заболевания с частотой встречаемости ВПЧ 16 типа, а также с инфицированием несколькими типами ВПЧ проводили с использованием 2-теста. Для анализа ассоциации степени дисплазии с вирусной нагрузкой и статусом вирусной ДНК использовали критерий Крускала—Уоллиса (Н-тест).

Результаты

Клинический материал (соскобы эпителия цервикального канала) был получен от 105-и пациенток с патологией шейки матки: эрозией, эктопией, лейкоплакией, диспластическими изменениями эпителия шейки матки и РШМ. В 88- ми пробах был обнаружен ВПЧ методом ПЦР с применением общих праймеров GP5+/GP6+ к фрагменту гена L1. ВПЧ высокого онкогенного риска (16, 18, 31, 33, 35, 39, 45, 52, 56, 58, 59 и 66 типов) были выявлены в 84-х пробах. У 40 пациенток из 84-х эпителий шейки матки был без атипии, ЦИН I была определена в 10-ти случаях, ЦИН II и III — в 24-х случаях. Десяти пациенткам был поставлен диагноз плоскоклеточной карциномы. Результаты определения типов ВПЧ высокого онкогенного риска у этих пациенток представлены на рис. 1. Вирус папилломы 16 типа был обнаружен почти в 61% всех случаев, остальные типы распределились по частоте встречаемости следующим образом: 35 тип — 23,8%, 56 тип — 15,5%, 33 тип — 14,2%, 45 тип — 14,2%, 18 тип — 11,9%, 31 тип — 10,7%, 52 тип — 4,8%, 66 тип — 3,6%, 39 тип — 2,4%, 58 и 59 типы — 1,2%. В 43% (36 из 84) было обнаружено два и более типа ВПЧ (табл. 2). Инфицирование несколькими типами ВПЧ не было ассоциировано со степенью дисплазии (р=0,998).

 

Таблица 2. Показатели инфицирования одним и несколькими типами ВПЧ в группах с различными цитологическими данными

Кол-во типов ВПЧ

Всего (n=84)

ЦН (n=40)

ЦИН I (n=10)

ЦИН II-III (n=24)

РШМ (n =10)

Один тип ВПЧ

48 (57%)

23 (57,5%)

6 (60%)

14 (58,3%)

5 (50%)

Два и более типа ВПЧ

36 (43%)

17 (42,5%)

4 (40%)

10 (41,7%)

5 (50%)

 

Частота встречаемости 16 типа ВПЧ была ассоциирована со стадией заболевания (р < 0,001):

  • при патологии шейки матки без атипии она составила 37,5% (15 случаев из 40);
  • при дисплазии I степени — 80,0% (8 случаев из 10);
  • при дисплазии II-III степени — 79,2% (19 случаев из 24);
  • при плоскоклеточной карциноме — 90% (9 случаев из 10) (рис. 1).

 

Рис. 1. Частота встречаемости типов ВПЧ высокого онкогенного риска в группах с различными данными цитологических исследований

 

ВПЧ 16 типа был обнаружен в 51-й пробе: 15-и проб были получены от пациенток без атипии, 8-и от пациенток с ЦИН I, 19-и — от пациенток с ЦИН II-III, 9 — от пациенток с РШМ. В одной из проб, полученных от пациенток с РШМ, не удалось амплифицировать фрагмент гена Е6 — данная проба была исключена из анализа. Таким образом, физический статус ДНК ВПЧ 16 типа был определен в 50-и пробах.

Принципиальной особенностью ПЦР в реальном времени является возможность следить за накоплением продуктов амплификации непосредственно во время реакции. Оптический модуль осуществляет динамическое измерение флюоресценции, генерируемой пришитыми к зондам флюорофорами.

 

Рис. 2. График амплификации фрагмента гена Е2 ВПЧ 16 типа в серии 10-кратных разведений стандарта (5х107—5х102) и двух клинических пробах (314 и 345)

 

Увеличение флюоресценции, отражающее динамику накопления продуктов амплификации, отображается на дисплее прибора в конце каждого цикла. ПЦР в реальном времени позволяет точно определить количество копий исследуемой ДНК в клинической пробе, так как исходное количество исследуемой матрицы оценивается по началу логарифмической фазы реакции, а не по количеству продуктов амплификации в конце реакции. На рис. 2 представлен график амплификации фрагмента гена Е2 ВПЧ 16 типа в серии 10-кратных разведений стандарта (5x107—5x102) и двух пробах ДНК, выделенной из клинического материала. Концентрацию ДНК в исследуемых пробах определяли с помощью стандартной кривой (рис. 3).

 

Рис. 3. Стандартная кривая, полученная в результате амплификации фрагмента гена Е2 ВПЧ 16 типа в серии 10-кратных разведений стандарта (5х107—5х102) и в двух клинических пробах (314 и 345)

 

Вирусную нагрузку рассчитывали как количество копий гена Е6 ВПЧ 16 типа на 50 нг тотальной ДНК. Среднее количество копий ДНК ВПЧ 16 типа возрастало с увеличением степени дисплазии. Если в случаях цитологической нормы оно составляло 4x104 копий вирусной ДНК на 50 нг клеточной ДНК, то у пациентов с ЦИН I — 2,8x105, а у пациенток с ЦИН II-III и РШМ — 4,4х106 и 2,Зх106 соответственно (табл. 3). С использованием критерия Крускала—Уоллиса установлено, что различия в значениях вирусной нагрузки на разных стадиях заболевания статистически значимы (р < 0,001).

 

Таблица 3. Количество копий ДНК ВПЧ 16 типа в клинических пробах*

Группы пациенток (по результатам цитологических исследований)

Диапазон значений

Среднее число копий ДНК

ЦН (n= 15)

2x101—3,9х105

4x104

ЦИН I (n=8)

4,4x101- 1,5х106

2,8х105

ЦИН II-III (n=19)

1,3x101—5,2х107

4,4x106

РШМ (n=8)

6x101—8,4х106

2,Зх106

— на 50 нг тотальной ДНК

 

Для оценки формы ДНК вируса использовали отношение числа копий гена Е2 к числу копий гена Е6 (Е2/Е6). Форму ДНК определяли как интегрированную, если ген Е2 не обнаруживали (Е2/Е6=0), эписомную — если количество копий гена Е2 равнялось количеству копий гена Е6 (Е2/Е6=1). Если число копий гена Е2 было меньше числа копий гена Е6, форму ДНК определяли как смешанную (Е2/Е6 < 1) [12].

Результаты определения статуса ДНК ВПЧ 16 типа в клинических пробах представлены на рис. 4. У женщин без атипии эписомную форму ДНК вируса типа выявили в 3-х случаях из 15-ти, смешанную — в 12-ти. В случаях легкой дисплазии эписомная форма ДНК была обнаружена в 2-х пробах из 8-ми, смешанная — в 6-ти. В пробах, полученных от женщин без атипии и с ЦИН I, интегрированная форма вируса не встречалась. При умеренной и тяжелой дисплазии эписомная форма ВПЧ была обнаружена в одном случае из 19-ти, смешанная — в 17-ти, и в одной пробе была выявлена интегрированная форма ДНК. У женщин с РШМ эписомная форма вируса была выявлена в 3-х случаях из 10-ти, смешанная — в 4-х, интегрированная — в одном.

 

Рис. 4. Статус ДНК ВПЧ 16 типа во всех случаях инфицирования 16 типом:

И — интегрированная форма ДНК; Э + И — сочетание эписомной и интегрированной форм ДНК; Э — эписомная форма ДНК

 

Мы получили несколько иную картину распространенности различных форм ДНК вируса 16 типа, когда включили в анализ случаи инфицирования только 16 типом (рис. 5). В 2-х из 6-ти случаев цитологической нормы была выявлена эписомная форма ДНК, в 4-х — смешанная. В одной из 4-х проб, полученных от женщин с легкой дисплазией, была обнаружена эписомная форма ДНК ВПЧ, в 3-х — смешанная. При высокой степени дисплазии и плоскоклеточной карциноме эписомная форма вируса не встречалась. У 10-ти из 11-ти женщин с высокой степенью дисплазии (II—III) ВПЧ 16 типа был выявлен в смешанной форме, у одной — в интегрированной. Одна из 4-х проб, полученных от женщин с РШМ, содержала интегрированную форму ДНК ВПЧ 16 типа, 3-х — смешанную. Применение критерия Крускала—Уоллиса для случаев инфицирования только 16 типом ВПЧ позволило выявить ассоциацию между степенью дисплазии и степенью интеграции, определяемой отношением количества копий гена Е2 к количеству копий гена Е6 (р < 0,25).

 

Рис. 5. Статус ДНК ВПЧ 16 типа в случаях инфицирования только 16 типом ВПЧ:

И — интегрированная форма ДНК; Э + И — сочетание эписомной и интегрированной форм ДНК; Э — эписомная форма ДНК

 

Обсуждение результатов

Характерной особенностью папилломавирусов является высокая гетерогенность, которая прослеживается между изолятами различных этнических групп, в пределах одной популяции и даже у одного и того же человека [3]. С использованием типоспецифических праймеров, предназначенных для детекции 12-ти самых распространенных типов ВПЧ высокого онкогенного риска, мы определили тип вируса в 88-ми пробах, полученных от женщин с патологией шейки матки. На первом месте по распространенности оказался 16 тип, встречающийся почти в 61% всех случаев, остальные типы значительно уступали ему по частоте встречаемости. Интересно отметить, что второе место по частоте встречаемости занял не 18, а 35 тип, который к тому же гораздо чаще обнаруживался в случаях инфицирования несколькими типами ВПЧ, чем в случаях моноинфекции. ВПЧ 39, 52, 58, 59 и 66 типов в случаях карциномы не встречались, что может быть объяснено, однако, небольшим размером выборки.

На сегодняшний день не существует единого мнения о значимости множественной ПВИ для неопластической прогрессии, и данные о связи множественной ПВИ и степени заболевания противоречивы. В нашем исследовании в 43% случаев пациентки были инфицированы двумя и более типами вируса, и инфицирование несколькими типами вируса не было связано со стадией заболевания. По мнению многих авторов, множественная ПВИ, возможно, лишь отражает обычную сексуальную трансмиссию одновременно нескольких типов ВПЧ. Если учесть, что исследования на выявление ВПЧ становятся важным элементом в скрининге цервикальных неоплазий и РШМ, необходимость дальнейшего изучения данного аспекта не вызывает сомнений.

В качестве одного из факторов риска неопластической прогрессии рассматривается высокая вирусная нагрузка, однако ее прогностическая ценность на сегодняшний день однозначно не определена. Swan D.C. и соавт. (1999), сравнивая возможности разных методов при определении вирусной нагрузки, отметили, что ни один из применяемых в настоящее время методов не позволяет оценить количество копий ДНК вируса с такой точностью, как метод полимеразной цепной реакции (ПЦР) в реальном времени [15]. С помощью этого метода они исследовали связь между количеством копий ДНК ВПЧ 16, 18, 31 и 45 типов и степенью дисплазии и показали, что среднее число копий ДНК существенно варьировалось в зависимости от типа ВПЧ, причем самые высокие показатели вирусной нагрузки были зарегистрированы для ВПЧ 16 типа. Кроме того, среднее количество копий ДНК ВПЧ 16 типа резко возрастало с увеличением степени дисплазии. Интересно отметить, что для других типов вируса данная закономерность не прослеживалась. Исследуя связь между количеством копий ДНК ВПЧ 16 типа и степенью дисплазии, Peitsaro Р. и соавт. (2002) также пришли к выводу, что прогрессия заболевания тесно связана с вирусной нагрузкой [12]. Авторы высказали предположение, что первоначально большое число копий генома ВПЧ увеличивает вероятность интеграции вирусной ДНК в геном хозяина и, как следствие, развития заболевания.

Уже в ранних работах по изучению статуса генома ВПЧ было показано, что интеграция ВПЧ в клеточный геном может происходить на ранних стадиях заболевания, и эписомная и интегрированная формы вируса могут выявляться одновременно [2, 9]. Согласно полученным нами данным, в 12-ти из 15-ти проб, полученных от женщин без атипии, и в 6-ти из 8-ми проб, полученных от женщин с легкой дисплазией, часть ВПЧ 16 типа находилась в эписомной форме, часть — в интегрированной. Только в двух пробах вирусная ДНК была полностью интегрирована в клеточный геном: одна проба была получена от пациентки с карциномой in situ, вторая — от пациентки с раком шейки матки. В обоих случаях в пробах был обнаружен вирус только 16 типа.

Существует мнение, что характер интеграции ВПЧ 16 типа отличается от характера интеграции ВПЧ других онкогенных типов. Так, для ВПЧ 18, 31, 33, 35, 52 и 58 типов показано, что в случаях дисплазий и РШМ вирусный геном почти всегда интегрирован в геном хозяина, тогда как геном ВПЧ 16 типа может существовать в эписомной форме даже при карциноме [4, 13]. В свете полученных нами данных большой интерес вызывают результаты работы, авторы которой изучали связь между физическим статусом вируса папилломы 16 и 18 типов и клиническими параметрами в 89 случаях дисплазий высокой степени и карцином [1]. ДНК вируса 16 типа была выявлена как в интегрированной (35%), так и в эписомной (38%) формах; в 28% случаев были обнаружены обе формы ДНК. В противоположность этому во всех случаях выявления вируса 18 типа вирусная ДНК присутствовала исключительно в интегрированной форме. Особенно интересным представляется наблюдение авторов, что ДНК вируса 16 типа чаще обнаруживалась в эписомной форме в случаях, когда имела место инфекция обоими типами вируса, чем в случаях, когда присутствовала ДНК только 16 типа. Авторы предположили существование своего рода конкуренции за клеточные сайты интеграции. Полная интеграция ВПЧ 18 типа в клеточный геном, по мнению авторов, может свидетельствовать о возможных различиях в поведении разных типов вируса при онкогенной трансформации и особой «агрессивности» некоторых типов ВПЧ. Возможно также, что в случаях инфицирования несколькими типами вируса в геном хозяина встраивается тип вируса, изначально представленный в большем количестве. В нашем исследовании в 1-м из 19-ти случаев дисплазии высокой степени (ЦИН II-III) и в 3-х из 8-ми случаев плоскоклеточной карциномы ДНК вируса содержалась в эписомной форме. Интересно отметить, что во всех этих случаях имела место коинфекция другими типами вируса и, более того, количество ВПЧ 16 типа в этих случаях было относительно невелико — от 6x101 до 6,7х102 копий ДНК на 50 нг тотальной ДНК.

Чтобы в полной мере оценить прогностическую значимость полученных нами результатов, мы планируем продолжение данной работы и анализ повторного материала от этих женщин. Не вызывает сомнений, что всестороннее изучение явления интеграции ДНК ВПЧ в клеточный геном будет способствовать как пониманию биологии неоплазий, так и выработке критериев, позволяющих прогнозировать течение заболевания.

×

About the authors

E. V. Shipitsyna

Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Author for correspondence.
Email: info@eco-vector.com
Russian Federation, Saint Petersburg

E. A. Orzheskovskaya

Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: info@eco-vector.com
Russian Federation, Saint Petersburg

K. А. Babkina

Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: info@eco-vector.com
Russian Federation, Saint Petersburg

А. М. Savicheva

Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: info@eco-vector.com
Russian Federation, Saint Petersburg

О. O. Orlova

Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: info@eco-vector.com
Russian Federation, Saint Petersburg

I. K. Yurkova

Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott

Email: info@eco-vector.com
Russian Federation, Saint Petersburg

Nikolay A. Mikaya

Research Institute of Oncology named after N.N. Petrova RAMS

Email: info@eco-vector.com

candidate of medical sciences, gynecologist-oncologist

Russian Federation, Saint Petersburg

References

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The frequency of occurrence of HPV types of high oncogenic risk in groups with different data of cytological studies

Download (11KB)
3. Fig. 2. Graph of amplification of the E2 gene fragment of HPV type 16 in a series of 10-fold dilutions of the standard (5x107-5x102) and two clinical trials (314 and 345)

Download (39KB)
4. Fig. 3. Standard curve obtained as a result of amplification of the E2 gene fragment of HPV type 16 in a series of 10-fold dilutions of the standard (5x107-5x102) and in two clinical samples (314 and 345)

Download (35KB)
5. Fig. 4. HPV type 16 DNA status in all cases of type 16 infection:

Download (23KB)
6. Fig. 5. HPV type 16 DNA status in cases of infection with only type 16 HPV:

Download (22KB)

Copyright (c) 2004 Eсо-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies