母体褪黑素昼夜节律的缺乏在儿童早期生长突增的发生中的作用

封面


如何引用文章

详细

这篇综述介绍了实验和临床研究的结果。这些研究表明,缺乏昼夜褪黑激素的孕妇,与她现有的病理(肥胖、糖尿病、代谢综合征、妊娠期、慢性胎盘功能不全等)有关,不仅会导致特定胎儿基因节律性活动的形成延迟,但这也导致了儿童体内代谢过程的不正常,以及在随后几年的生命中病理的程序化。这一因素在生命最初几个月生长陡增的病理生理机制中的重要意义决定了一种评估肥胖风险的新方法,这使得有必要研究在怀孕26周之前出生的胎儿的大脑发育和其他功能系统受损的后果,从而导致母亲褪黑素缺乏,即在早期个体发生的最关键时期,指导和协调遗传发育过程的关键信号分子。

全文:

对儿童肥胖频率增加原因的分析表明,这与出生后几个月体重增加过多有关。这种现象被称为《追赶生长》[1-4]。
研究发现,在不利条件下进行宫内发育的儿童体重增加过多:如果母亲患有肥胖、糖尿病、代谢综合征、三个或三个以上功能系统(心血管系统、胃肠道、免疫系
统等)的慢性疾病,以及伴有慢性胎盘功能不全、先兆子痫、妊娠期糖尿病的妊娠并发症[5-7]。与此同时,一些孩子出生时的体重已经远远超过了这个胎龄的适宜体重,而另一些孩子则相反,体重滞后于生长,即出现了不对称形式的宫内发育
迟缓[8-10]。然而,所有儿童在出生后的头几个月都表现出内脏肥胖[11-13],
随后几年出现2型糖尿病、代谢综合征、心血管和神经系统的病理[14-16]。

基于对决定这一病理过程及其不良后果的各种机制的研究[17-20],提出了几种假说来解释生长突增的原因及其对后续发育的影响。因此,根据营养摄入不足条件下的《经济表型》假说,胎儿的适应性反应旨在优化心脏、脑等器官的生长
发育,而损害内脏(肝、胰等),即儿童在适应新的环境条件时,导致后者的形态功能改变,导致代谢过程的破坏和脂肪组织的过度积累[21, 22]。其他的假说涉及孕妇的糖尿病、过度营养和高脂肪饮食在胎儿高血糖、高胰岛素血症、高瘦素血症和皮质醇水平升高以及随后调节下丘脑神经元的代谢反应中所起的作用[23-26]。认为,这种生长陡增与出生后早期过度摄入蛋白质(早期蛋白质假说)有关。婴儿
饮食中蛋白质含量高,导致血浆中胰岛素原性氨基酸浓度增加,刺激胰岛素样生长因子和胰岛素的产生,从而导致肥胖。
缺乏母乳喂养和人工喂养期间蛋白质水平升高被认为是肥胖的高风险[8]。

因此,在围产期,儿童功能系统激素和代谢调节机制发育的基因程序的失调决定了儿童早期肥胖的发展,此外,
这一病理形成的主要机制是氧化应激、
表观遗传调控、糖皮质激素效应、以及神经活性类固醇、生长激素及相关肽,
即胰岛素样生长因子(IGF-1)和催产素的参与[27-29]。在这种情况下,每一种提出的机制都呈现了褪黑激素的作用,
其缺乏会导致肥胖的发展。因此,褪黑素作为氧自由基清除剂、最强大的抗氧化剂和其他抗氧化剂的激活剂(过氧化氢酶,超氧化物歧化酶,谷胱甘肽过氧化物酶),可以防止母体—胎盘—胎儿系统氧化应激和线粒体功能障碍的发生[30-32]。它抑制神经元和诱导型一氧化氮合酶的活性和高毒性过氧亚硝酸盐的生成,然而,诱导内皮合酶活性,从而有助于改善子宫-胎盘血液循环[33]。
由于胎儿组织中存在G蛋白连接受体,褪黑激素对肾上腺皮质醇的产生和棕色脂肪组织的脂解有直接调节作用[34]。建立了褪黑素与下丘脑-垂体-肾上腺系统功能之间的病理生理关系[35]。我们知道,严重的氧化应激可以显著改变与控制机体能量稳态有关的基因的表达[36]。

研究证实了母体和胎盘内稳态障碍对围产期表观遗传过程(DNA甲基化、组蛋白修饰等)发展的影响。因此,建立了控制脂肪组织细胞、肝脏以及下丘脑神经肽和糖皮质激素受体在生长陡增发生中的分化和功能的基因表达特征[37-41]。
组蛋白(H3K4)是一种肝脏中的胰岛素样生长因子,其结构的表观遗传修饰导致发育迟缓胎儿血液中IGF-1水平的升高,
这决定了它们在出生后最初几个月的快速生长[42, 43]。然而,褪黑素在保护基因表达不受表观遗传变化影响方面发挥着关键作用,包括钟控(clock-controlled)的基因,这些基因参与了代谢过程的昼夜节律调节[44, 45]。因此,在单一的母体—胎盘—胎儿系统中,由于褪黑激素的分泌量较低,在胎儿发育的关键时期可能会对某种或另一种因素产生不利影响,
从而导致代谢紊乱的《编程》。

褪黑激素在骨骺中合成,其内分泌功能依赖于光模式。来自视网膜神经节细胞的光信息通过视网膜—下丘脑束到达下丘脑视交叉上核(SCN),是昼夜节律发生器或生物钟。从那里,信号到达上颈神经节,然后沿着交感神经的去甲肾上腺素途径到达骨骺,在那里褪黑素被
合成。光线会抑制褪黑激素的产生和
分泌,所以人体血液中褪黑激素的最高水平是在晚上,最低水平是在白天。褪黑素产生的每日节律是内源性生物节律及其同步正常生理调节的标志[46]。神经外褪黑素存在于所有的器官和细胞中[47]。褪黑素是由色氨酸合成的,色氨酸通过羟化
作用(色氨酸羟化酶)和脱羧作用(5-氧色氨酸羟化酶)转化为血清素。在N-乙酰转移酶和氧吲哚甲基转移酶的帮助下,
褪黑素由血清素形成。褪黑素从骨骺的松果体细胞释放到血液和脊髓液中,而在身体其他细胞中分泌的褪黑素,少量进入
血液,对其合成部位产生旁分泌和自分泌的影响[48]。褪黑素通过与受体结合,
在所有组织和细胞中发挥调节作用。
两种膜受体(MT1和MT2)及其染色体
定位(4q35和11q21-22),以及核受体(RORα)已在人类中被鉴定[49]。

褪黑素参与胎盘的形态功能发育过程和保存其神经免疫内分泌功能,旨在形成胎儿的重要功能系统。在生理发生的怀孕期间,MT的昼夜节律波动增加5-10倍,而血清中激素的含量在分娩前达到最高值[50, 51]。目前已经证实,母体MT触发了胎儿骨骺形态和功能发育的遗传过程以及视交叉上核昼夜功能。因此,从宫内发育的第26周开始,母体的骨骺褪黑激素在夜间启动时钟基因的昼夜节律,参与调节代谢过程和胎儿功能系统的重要功能[52]。
这确保了出生后对新环境条件的适应,
并将儿童功能系统的内源性生物节律整合到昼夜节律系统中,其由自身的视交叉上核根据亮度变化来调节[53]。母亲褪黑素对26周以前出生的孩子没有类似的影响,显然,决定了高发病率和随后的残疾。

需要强调的是,在上述所有疾病和妊娠并发症中,儿童易肥胖的妇女,夜间血液中的褪黑激素水平并不升高
[30, 54-57]。实验研究表明,在这种情
况下,后代的骨骼肌褪黑素的产生也
较低,它不仅在出生时缺乏昼夜节律,
在以后的生活中也没有,这决定了代谢规划的早期实施[58-60]。在生命的最初几天和几周内,骨骺褪黑素产生的昼夜节律的形成通常会加速,母亲通过母乳喂养对这一过程产生影响。据了解,
母乳中含有60多种生物活性因子,母乳中促生长激素、催乳素、IGF-1、胰岛素、
瘦素、松弛素和表皮生长因子的浓度高于母亲的外周血[61-64]。在健康母亲的母乳中检测到高水平的色氨酸和褪黑素,
它们受昼夜节律变化的影响,特别在初
乳中[65, 66]。这就是为什么在婴儿出生的第二个月结束时,在母乳喂养的背
景下,每天褪黑激素的产生会形成一个清晰的节奏,这也得益于对喂食方式的
遵守[50]。

褪黑素作为碳水化合物和脂肪代谢的关键调节因子,控制脂肪细胞分化、
脂肪生成、脂肪分解、脂肪酸和葡萄糖的捕获,以及胰岛素和能量储备的作用,
其同时在肌肉、脂肪组织、肝脏和胰腺中进行新陈代谢的昼夜节律组织[67]。褪黑素通过与特定的核受体(RORα/RZR)
结合,控制细胞生长和细胞分化[68],这为其参与DNA和组蛋白的表观遗传修饰提供了广阔的机会,而表观遗传修饰与各种病理的发展直接相关。

褪黑素产生昼夜节律的遗传形成过程的延迟会导致代谢过程的不同步、能量代谢的破坏和体重的过度增加[63, 69, 70]。此外,褪黑素分泌量低的母亲往往泌乳量减少,他们中的大多数人被迫用配方奶喂完孩子。这种情况下,
配方奶粉中的蛋白质含量超过了母乳中的含量,从而导致了更大的生长陡增。考虑到肥胖的病理生理机制和发展,应该使用蛋白质水平接近妇女的母乳,富含富含色氨酸的-乳白蛋白,此外,还包括低
聚糖。后者显著优化肠道菌群的形成,
积极参与褪黑素的合成和代谢[71, 72]。近年来,研究人员开始关注孕期和产后个体发育中使用褪黑素的效果,以重新规划病理发展[73-75],这将使能够确定客观的风险标准,并开发预防病理过程的方法。

结论

因此,缺乏昼夜褪黑激素的孕妇,
与她现有的病理(肥胖、糖尿病、代谢综合征、妊娠期、慢性胎盘功能不全等)
有关,不仅会导致特定胎儿基因节律性活动的形成延迟,但这也导致了儿童体内代谢过程的不正常,以及在随后几年的生命中病理的程序化。这一因素在生命最初几个月生长陡增的病理生理机制中的重要意义决定了一种评估肥胖风险的新方法,
这使得有必要研究在怀孕26周之前出生的胎儿的大脑发育和其他功能系统受损的
后果,从而导致母亲褪黑素缺乏,即在早期个体发生的最关键时期,指导和协调遗传发育过程的关键信号分子。

×

作者简介

Inna Evsyukova

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

编辑信件的主要联系方式.
Email: eevs@yandex.ru
ORCID iD: 0000-0003-4456-2198
Researcher ID: 520074

MD, PhD, DSci (Medicine), Professor, Leading Researcher. The Department of Physiology and Pathology of the Newborn

俄罗斯联邦, Saint Petersburg

Eduard Ailamazyan

The Research Institute of Obstetrics, Gynecology, and Reproductology named after D.O. Ott

Email: iagmail@ott.ru
ORCID iD: 0000-0002-9848-0860
SPIN 代码: 9911-1160
Researcher ID: 80774

MD, PhD, DSci (Medicine), Professor, Honored Scientist of the Russian Federation, Academician of the Russian Academy of Sciences, Scientific Director. The Department of Obstetrics and Perinatology

俄罗斯联邦, Saint Petersburg

参考

  1. Bauman A, Rutter H, Baur L. Too little, too slowly: international perspectives on childhood obesity. Public Health Res Pract. 2019;29(1). pii:2911901. https://doi.org/10.17061/phrp2911901.
  2. De Onis M, Blossner M, Borghi E. Global prevalence and trends of overweight and obesity among preschool children. Am J Clin Nutr. 2010;92(5):12157-12164. https://doi.org/10.3945/ajcn.2010.29786.
  3. Okada T, Takahashi S, Nagano N, et al. Early postnatal alteration of body composition in preterm and small-for-gestational-age infants: implications of cath-up fat. Pediatr Res. 2015;77(1-2):136-142. https://doi.org/10.1038/pr.2014.164.
  4. Cho WK, Suh BK. Catch-up growth and catch-up fat in children born small for gestational age. Korean J Pediatr. 2016;59(1):1-7. https://doi.org/10.3345/kjp.2016.59.1.1.
  5. Tran BX, Dang KA, Le HT, et al. Global evolution of obesity research in children and youths: setting priorities for interventions and policies. Obes Facts. 2019;12(2):137-139. https://doi.org/10.1159/000497121.
  6. Whitaker RC, Dietz WH. Role of the prenatal environment in the development of obesity. J Pediatr. 1998;132(5):768-776. https://doi.org/10.1016/s0022-3476(98)70302-6.
  7. Oken E, Gillman MW. Fetal origins of obesity. Obes Res. 2003;11(4):496-506. https://doi.org/10.1038/oby.2003.69.
  8. Hales CN, Ozanne SE. The dangerous road of catch-up growth. J Physiology. 2003;547(1):5-10. https://doi.org/ 10.1113/jphysiol.2002.024406.
  9. Tappy L. Adiposity in children born small for gestational age. Int J Obes. (Lond). 2010;34(7):1230. https://doi.org/10.1038/sj.ijo.0803517.
  10. Hediger ML, Overpeck MD, McGlynn A, et al. Growth and fatness at three to six years of age of children born small- or large-for-gestational age. Pediatrics. 1999;104(3):e33. https://doi.org/10.1542/peds.104.3.e33.
  11. Kinra S, Baumer JH, Davey Smith G. Early growth and childhood obesity: a historical cohort study. Arch Dis Child. 2005;90(11):1122-1127. https://doi.org/10.1136/adc.2004.066712.
  12. Mierzynski R, Dluski D, Darmochwal-Kolarz D, et al. Intra-uterine growth retardation as a risk factor of postnatal metabolic disorders. Curr Pharm Biotechnol. 2016;17(7):587-596. https://doi.org/10.2174/1389201017666160301104323.
  13. Mericq V, Martinez-Aguayo A, Uauy R, et al. Long-term metabolic risk among children born premature or small for gestational age. Nat Rev Endocrinol. 2017;13(10):50-62. https://doi.org/10.1038/nrendo.2016.127.
  14. Longo S, Bollani L, Decembrino L, et al. Short-term and long-term sequelae in intrauterine growth retardation (IUGR). J Matern Fetal Neonatal Med. 2013;26(3):222-225. https://doi.org/10.3109/14767058.2012.715006.
  15. Voerman E, Santos S, Inskip H, et al. Association of gestational weight gain with adverse maternal and infant outcomes. JAMA. 2019;321(17):1702-1715. https://doi.org/10/1001/jama.2019.3820.
  16. Hong YH, Chung SC. Small for gestational age and obesity related comorbidities. Ann Pediatr Endocrinol Metab. 2018;23(1):4-8. https://doi.org/10.6065/apem.2018. 23.1.4.
  17. Koontz MB, Gunzler DD, Presley L, Catalano PM. Longitudinal changes in infant body composition: association with childhood obesity. Pediatr Obes. 2014;9(6):e141-e144. https://doi.org/10.1111/ijpo.253.
  18. Druet C, Stettler N, Sharp S, et al. Prediction of childhood obesity by infancy weight gain: an individual-level meta-analysis. Paediatr Perinat Epidemiol. 2012;26(1):19-26. https://doi.org/10.1111/j.1365-3016.2011.01213.
  19. Zhou J, Dang S, Zeng L, et al. Rapid infancy weight gain and 7- to 9-year childhood obesity risk: a prospective cohort study in rural western China. Medicine (Baltimore). 2016;95(16):e3425. https://doi.org/0.1097/000000000000 3425.
  20. Koletzko B, Shamir R, Truck D, Phillip M. (ed). Nutrition and Growth: Yearbook 2019. World Rev Nutr Diet. Vol. 119. Basel: Karger; 2019. Р. 119-137. https://doi.org/10.1159/000494312.
  21. Hales CN, Barker DJ. The thrifty phenotype hypothesis. Br Med Bull. 2001;60:5-20. https://doi.org/10.1093/bmb/60.1.5.
  22. Grino M. Prenatal nutritional programming of central obesity and the metabolic syndrome: role of adipose tissue glucocorticoid metabolism. Am J Physiol Regul Integr Comp Physiol. 2005;289:R1233-R1235. https://doi.org/10.1152/ajpregu.00542.2005.
  23. Trandafir LM, Temneanu OR. Pre- and post-natal risk and determination of factors for child obesity. J Med Life. 2016;9(4):386-391. https://doi.org/10.22336/jml.2016.0412.
  24. Hellmuth C, Lindsay KL, Uhi O, et al. Maternal metabolomic profile and fetal programming of offspring adiposity: identification of potentially protective lipid metabolites. Mol Nutr Food Res. 2019;63(1):e1700889. https://doi.org/10.1002/mnfr.201700889.
  25. Page KC, Malik RE, Ripple JA, Anday EK. Maternal and postweaning diet interaction alters hypothalamic gene expression and modulates response to a high-fat diet in male offspring. Am J Physiol Regul Integr Comp Physiol. 2009;297(4):R1049-1057. https://doi.org/10.1152/aipregu. 90585.2008.
  26. Desai M, Ross MG. Fetal programming of adipose tissue: effects of IUGR and maternal obesity/high fat diet. Semin Reprod Med. 2011;29(3):237-245. https://doi.org/10.1055/s-0031-1275517.
  27. McMullen S, Langley-Evans SC, Gambling L, et al. A common cause for a common phenotype: the gatekeeper hypothesis in fetal programming. Med Hypotheses. 2012;78(1):88-94. https://doi.org/10.1016/j.mehy.2011.09.047.
  28. Cottrell EC, Seckl JR. Prenatal stress, glucocorticoids and the programming of adult disease. Front Behav Neurosci. 2009;3:19. https://doi.org/10.3389/neuro.08.019.2009.
  29. Thompson LP, Al-Hasan Y. Impact of oxidative stress in fetal programming. J Pregnancy. 2012;2012.582748. https://doi.org/10.1155/2012/582748.
  30. Reiter RJ, Tan DX, Korkmaz A, Ma S. Obesity and metabolic syndrome: association with chronodisruption, sleep deprivation, and melatonin suppression. Ann Med. 2012;44(6):564-577. https://doi.org/10.3109/07853890.2011.586365.
  31. Arutjunyan AV, Evsyukova II, Polyakova VO. The role of melatonin in morphofunctional development of the brain in early ontogeny. Neurochem J. 2019;13(3):240-248. https://doi.org/10.1134/S1819712419030036.
  32. Richter HG, Hansell JA, Raut SM, Giussani DA. Melatonin improves placental efficiency and birth weight and increases the placental expression of antioxidant enzymes in undernourished pregnancy. J Pineal Res. 2009;46(4):357-364. https://doi.org/10.1111/j.1600-079X.200900671.x.
  33. Hracsko Z, Hermesz E, Ferencz A, et al. Endothelial nitric oxide synthase is up-regulated in the umbilical cord in pregnancies complicated with intrauterine growth retardation. In Vivo. 2009;23(5):727-732.
  34. Torres-Farfan C, Valenzuela FJ, Mondaca M, et al. Evidence of a role for melatonin in fetal sheep physiology: direct actions of melatonin on fetal cerebral artery, brown adipose tissue and adrenal gland. J Physiol. 2008;586(16):4017-4027. https://doi.org/10.1113/jphysiol.2008.154351.
  35. Wu TH, Kuo HC, Lin IC, et al. Melatonin prevents neonatal dexamethasone induced programmed hypertension: histone deacetylase inhibition. J Steroid Biochem Mol Biol. 2014;144(Pt B):253-259. https://doi.org/10.1016/j.jsbmb. 2014.07.008.
  36. Levin BE. Metabolic imprinting: critical impact of the perinatal environment on the regulation of energy homeostasis. Philos Trans R Soc Lond B Biol Sci. 2006;361(1471):1107-1121. https://doi.org/10.1098/rstb.2006.1851.
  37. Bol VV, Delattre AI, Reusens B, et al. Forced catch-up growth after fetal protein restriction alters the adipose tissue gene expression program leading to obesity in adult mice. Am J Physiol Regul Integr Comp Physiol. 2009;297(2):R291-299. https://doi.org/10.1152/ajpregu.90497.2008.
  38. Classidy FC, Charalambous M. Genomic imprinting, growth and maternal-fetal interactions. J Exp Biol. 2018;221(Suppl 1). pii: jeb164517. https://doi.org/10.1242/jeb.164517.
  39. Hajj N, Pliushch G, Schneider E, et al. Metabolic programming of MEST DNA methylation by intrauterine exposure to gestational diabetes mellitus. Diabetes. 2013;62(4):1320-1328. https://doi.org/10.2337/ab12-0289.
  40. Peng Y, Yu S, Li H, et al. MicroRNAs: emerging roles in adipogenesis and obesity. Cell Signal. 2014;26(9):1888-1896. https://doi.org/10.1016/j.cellsig.2014.05.006.
  41. Stevens A, Begum G, White A. Epigenetic changes in the hypothalamic pro-opiomelanocortin gene: A mechanism linking maternal undernutrition to obesity in the offspring? Eur J Pharmacol. 2011;660(1):194-201. https://doi.org/10.1016/j.ejphar.2010.10.111.
  42. Tosh DN, Fu Q, Callaway CW, et al. Epigenetics of programmed obesity: alteration in IUGR rat hepatic IGF1 mRNA expression and histone structure in rapid vs delayed postnatal catch-up growth. Am J Physiol Gastrointest Liver Physiol. 2010;299(5):G1023-G1029. https://doi.org/10.1152/ajpgi.00052.2010.
  43. Rustogi D, Yadav S, Ramji S, Misha TK. Growth patterns in small for gestational age babies and correlation with insulin-like growth fator-1 levels. Indian Pediatr. 2018;55(11):975-978. https://doi.org/10.1007/s13312-018-1422-1.
  44. Mazzoccoli G, Pazienza V, Vinciguerra M. Clock genes and clock-controlled genes in the regulation of metabolic rhytms. Chronobiol Intern. 2012;29(3):227-251. https://doi.org/10.3109/07420528.2012.658127.
  45. Korkmaz A, Reiter RJ. Epigenetic regulation: a new research area for melatonin? J Pineal Res. 2008;44(1):41-44. https://doi.org/10.1111/j.1600-079X.2007.00509.x.
  46. Анисимов В.Н. Мелатонин (роль в организме, применение в клинике). – СПб.: Система, 2007. – 40 с. [Anisimov VN. Melatonin (rol’ v organizme, primenenie v klinike). Saint Petersburg: Sistema; 2007. 40 р. (In Russ.)]
  47. Kvetnoy IM. Extrapineal melatonin: location and role within diffuse neuroendocrine system. Histochem J. 1999;31(1):1-12. https://doi.org/10.1023/a:1003431122334.
  48. Reiter RJ, Tan DX, Korkmaz A, Rosales-Corral SA. Melatonin and stable circadian rhythm optimize maternal, placental and fetal physiology. Hum Reprod Update. 2014;20(2):293-307. https://doi.org/10.1093/humupd/dmt054.
  49. Dubocovich ML. Melatonin receptors: role on sleep and circadian rhythm regulation. Sleep Med. 2007;8(Suppl 3):34-42. https://doi.org/10.1016/j.sleep.2007.10.007.
  50. Евсюкова И.И., Кветной И.М. Мелатонин и циркадианные ритмы в системе мать – плацента – плод // Молекулярная медицина. − 2018. − Т. 16. − № 6. − С. 9−13. [Evsyukova II, Kvetnoy IM. Melatonin and circadian rhythms in the system mother-placenta-fetus. Molekuliarnaia meditsina. 2018;16(6):9-13. (In Russ.)]. https://doi.org/10.29296/24999490-2018-06-02.
  51. Voiculescu SE, Zugouropoulos N, Zahiu CD, Zagrean AM. Role melatonin in embryo fetal development. J Med Life. 2014;7(4):488-492.
  52. Sagrillo-Fagundes L, Assuncao Salustiano EV, Yen PW, et al. Melatonin in pregnancy: effects on brain development and CNS programming disorders. Curr Pharm Des. 2016;22(8):978-986. https://doi.org/10.2174/1381612822666151214104624.
  53. Serón-Ferré M, Mendez N, Abarzua-Catalan L, et al. Circadian rhythms in the fetus. Mol Cell Endocrinol. 2012;349(1):68-75. https://doi.org/10.1016/j.mce.2011.07.039.
  54. Айламазян Э.К., Евсюкова И.И., Ярмолинская М.И. Роль мелатонина в развитии гестационного сахарного диабета // Журнал акушерства и женских болезней. − 2018. − Т. 67. − № 1. − С. 85–91. [Aulamazyan EK, Evsyukova II, Yarmolinskaya MI. The role of melatonin in development of gestational diabetes mellitus. Journal of obstetrics and women’s diseases. 2017;67(1):85-91. (In Russ.)]. https://doi.org/10.17816/JOWD67185-91.
  55. Forrestel AC, Miedlich SU, Yurcheshen M, et al. Chronomedicine and type 2 diabetes: shining some light on melatonin. Diabetologia. 2017;60(5):808-822. https://doi.org/10.1007/s00125-016-4175-1.
  56. Zeng K, Gao Y, Wan J, et al. The reduction in circulating levels of melatonin may be associated with the development of preeclampsia. J Hum Hypertens. 2016;30(11):666-671. https://doi.org/10.1038/jhh.2016.37.
  57. Lanoix D, Guerin P, Vaillancourt C. Placental melatonin production and melatonin receptor expression are altered in preeclampsia: new insights into the role of this hormone in pregnancy. J Pineal Res. 2012;53(4):417-425. https://doi.org/10.1111/j.1600-079X.2012.01012.x.
  58. Kennaway DJ. Programming of the fetal suprachiasmatic nucleus and subsequent adult rhythmicity. Trends Endocrinol Metab. 2002;13(9):398-402. https://doi.org/10.1016/s1043-2760(02)00692-6.
  59. Chen YC, Sheen JM, Tiao MM, et al. Role of melatonin in fetal programming in compromised pregnancies. Int J Mol Sci. 2013;14(3):5380-5401. https://doi.org/10.3390/ijms14035380.
  60. Mendez N, Halabi D, Spichiger C, et al. Gestational chronodisruption impairs circadian physiology in rat male offspring, increasing the risk of chronic disease. Endocrinology. 2016;157(12):4654-4668. https://doi.org/10.1210/en 2016-1282.
  61. Bagnell CA, Bartol FF. Relaxin and the “Milky-Way”: the lactocrine hypothesis and maternal programming of development. Mol Cell Endocrinol. 2019;487:18-23. https://doi.org/10.1016/j.mce.2019.01.003.
  62. Ellsworth L, Harman E, Padmanabhan V, Gregg B. Lactation programming of glucose homeostasis: a window of opportunity. Reproduction. 2018;156(2):R23-R42. https://doi.org/10.1530/REP-17-0780.
  63. Daniels KM, Farmer C, Jimenez-Flores R, Rijnkels M. Lactation biology symposium: the long-term impact of epigenetics and maternal influence on the neonate through milk-borne factors and nutrient status. J Anim Sci. 2013;91(2):673-675. https://doi.org/10.2527/jas.2013-6237.
  64. Grunewald M, Hellmuth C, Kirchberg FF, et al. Variation and interdependencies of human milk macronutrients, fatty acids, adiponectin, insulin, and IGF-II in the European PreventCD cohort. Nutrients. 2019;11(9). pii: E2034. https://doi.org/10.3390/nu11092034.
  65. Molad M, Ashkenazi L, Gover A, et al. Melatonin stability in human milk. Breastfeed Med. 2019;14(9):680-682. https://doi.org/10.1089/bfm.2019.0088.
  66. Illnerova H, Buresova M, Presl J. Melatonin rhythm in human milk. J Clin Endocrin Metab. 1993;77(3):838-841. https://doi.org/10.1210/jcem.77.3.8370707.
  67. Szewczyk-Golec K, Wozniak A, Reiter RJ. Inter-relationships of the chronobiotic, melatonin, with leptin and adiponectin: implications for obesity. J Pineal Res. 2015;59(3):277-291. https://doi.org/1./1111/jpi.12257.
  68. Cipolla-Neto J, Amaral FG, Afeche SC, et al. Melatonin, energy metabolism, and obesity: a review. J Pineal Res. 2014;56(4):371-381. https://doi.org/10.1111/jpi.12137.
  69. De Souza CA, Gallo CC, de Camargo LS, et al. Melatonin multiple effects on brown adipose tissue molecular machinery. J Pineal Res. 2019;66(2):e12549. https://doi.org/10.1111/jpi.12549.
  70. Cipolla-Neto J, Amaral FG. Melatonin as a hormone: new physiological and clinical insights. Endocr Rev. 2018;39(6):990-1028. https://doi.org/10.1210/er.2018-00084.
  71. Yin J, Li Y, Han H, et al. Melatonin reprogramming of gut microbiota improves lipid dysmetabolism in high-fat diet-fed mice. J Pineal Res. 2018;65(4):e12524 https://doi.org/10.1111/jpi.12524.
  72. Xu P, Wang J, Hong F, et al. Melatonin prevents obesity through modulation of gut microbiota in mice. J Pineal Res. 2017;62(4). https://doi.org/10.1111/jpi.12399.
  73. Тain YL, Huang LT, Hsu CN. Developmental programming of adult disease: reprogramming by melatonin? Int J Mol Sci. 2017;18(2). pii: 426. https://doi.org/10.3390/ijms.18020426.
  74. Cisternas CD, Compagnucci MV, Conti NR, et al. Protective effect of maternal prenatal melatonin administration rat pups born to mothers submitted to constant light during gestation. Braz J Med Biol Res. 2010; 43(9):874-882. https://doi.org/10.1590/s0100-879x2010007500083.
  75. Baxi DB, Singh PK, Vachhrajani KD, Ramachandran AV. Neonatal corticosterone programs for thrifty phenotype adult diabetic manifestations and oxidative stress: Countering effect of melatonin as a deprogrammer. J Matern Fetal Neonatal Med. 2012;25(9):1574-1585. https://doi.org/10.3109/14767058.2011.648235.

补充文件

附件文件
动作
1. JATS XML

版权所有 © Evsyukova I.I., Ailamazyan E.K., 2020

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 66759 от 08.08.2016 г. 
СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия Эл № 77 - 6389
от 15.07.2002 г.



##common.cookie##