The place of endoscopic laser cyclodestruction in the system of microinvasive glaucoma surgery

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Glaucoma is one of the leading causes of irreversible blindness in the world. Reducing intraocular pressure is the only way to slow down the progression of glaucomatous optic neuropathy. Minimally invasive glaucoma surgery aims to provide a safer way of reduction of intraocular pressure than traditional methods, and at the same time it is capable to reduce dependence on antihypertensive therapy. Cyclodestructive high-precision method of reducing the production of aquоeus humor occupies a confident position among modern minimally invasive glaucoma surgery methods. The data obtained as a result of studying the literature confirm our idea on the endoscopic laser cyclodestruction method as a minimally invasive, safe, reliable antiglaucomatous component of the combined surgical treatment of cataract and glaucoma.

Full Text

Restricted Access

About the authors

Viacheslav Yu. Skvortsov

Kirov Military Medical Academy

Author for correspondence.
Email: doc.uran@gmail.com
ORCID iD: 0000-0002-1345-9537
SPIN-code: 6417-1899

Cand. Sci. (Med.), Lecturer of the Department of Ophthalmology

Russian Federation, Saint Petersburg

Alexey N. Kulikov

Kirov Military Medical Academy

Email: alexey.kulikov@mail.ru
ORCID iD: 0000-0002-5274-6993
SPIN-code: 6440-7706
Scopus Author ID: 57001225300
ResearcherId: M-2094-2016

Dr. Sci. (Med.), Assistant Professor, Head of the Department of Ophthalmology

Russian Federation, Saint Petersburg

Dmitriy V. Tulin

Kirov Military Medical Academy

Email: d.v.tulin@gmail.com
ORCID iD: 0000-0003-3485-8227
SPIN-code: 8336-7272

Ophthalmologist of the Clinic of the Department of Ophthalmology

Russian Federation, Saint Petersburg

References

  1. Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262–267. doi: 10.1136/bjo.2005.081224
  2. Tham Y-C, Li X, Wong TY, et al. Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. Ophthalmology. 2014;121(11):2081–2090. doi: 10.1016/j.ophtha.2014.05.013
  3. Heijl A, Leske MC, Bengtsson B, et al. Reduction of intraocular pressure and glaucoma progression: results from the Early Manifest Glaucoma Trial. Arch Ophthalmol. 2002;120(10):1268–1279. doi: 10.1001/archopht.120.10.1268
  4. Lemij HG, Hoevenaars JG, van der Windt C, et al. Patient satisfaction with glaucoma therapy: reality or myth? Clin Ophthalmol. 2015;9:785–793. doi: 10.2147/OPTH.S78918
  5. Leahy KE, White AJ. Selective laser trabeculoplasty: current perspectives. Clin Ophthalmol. 2015;9:833–841. doi: 10.2147/OPTH.S53490
  6. Woo DM, Healey PR, Graham SL, Goldberg I. Intraocular pressure-lowering medications and long-term outcomes of selective laser trabeculoplasty. Clin Experiment Ophthalmol. 2015;43(4): 320–327. doi: 10.1111/ceo.12452
  7. Gedde SJ, Schiffman JC, Feuer WJ, et al. Tube versus Trabeculectomy Study Group. Treatment outcomes in the Tube Versus Trabeculectomy (TVT) study after five years of follow-up. Am J Ophthalmol. 2012;153(5):789–803. doi: 10.1016/j.ajo.2011.10.026
  8. Jordan JF, Wecker T, van Oterendorp C, et al. Trabectome surgery for primary and secondary open angle glaucomas. Graefe’s Arch Clin Exp Ophthalmol. 2013;251(12):2753–2760. doi: 10.1007/s00417-013-2500-7
  9. Gedde SJ, Herndon LW, Brandt JD, et al. Tube versus Trabeculectomy Study Group. Postoperative complications in the Tube Versus Trabeculectomy (TVT) study during five years of follow-up. Am J Ophthalmol. 2012;153(5):804–814. doi: 10.1016/j.ajo.2011.10.024
  10. Francis BA, Minckler D, Dustin L, et al. Combined cataract extraction and trabeculotomy by the internal approach for coexisting cataract and open-angle glaucoma: initial results. J Cataract Refract Surg. 2008;34(7):1096–1103. doi: 10.1016/j.jcrs.2008.03.032
  11. Johnson M. What controls aqueous humour outflow resistance? Exp Eye Res. 2006;82(4):545–557. doi: 10.1016/j.exer.2005.10.011
  12. Minckler DS, Baerveldt G, Alfaro MR, Francis BA. Clinical results with the Trabectome for treatment of open-angle glaucoma. Ophthalmology. 2005;112(6):962–967. doi: 10.1016/j.ophtha.2004.12.043
  13. Francis BA, See RF, Rao NA, et al. Ab interno trabeculectomy: development of a novel device (Trabectome) and surgery for open-angle glaucoma. J Glaucoma. 2006;15(1):68–73. doi: 10.1097/01.ijg.0000196653.77836.af
  14. Minckler D, Baerveldt G, Ramirez MA, et al. Clinical results with the Trabectome, a novel surgical device for treatment of open-angle glaucoma. Trans Am Ophthalmol Soc. 2006;104:40–50.
  15. Maeda M, Watanabe M, Ichikawa K. Evaluation of trabectome in open angle glaucoma. J Glaucoma. 2013;22(3):205–208. doi: 10.1097/IJG.0b013e3182311b92
  16. Patent RU2389456/ 20.05.2010. Ivanov DI, Nikulin ME, Strukov VV. Sposob odnomomentnogo khirurgicheskogo lecheniya katarakty i glaukomy putem trabekulotomii ab interno i instrument dlya ee vypolneniya. Available at: https://new.fips.ru/registers-doc-view/fips_servlet? DB=RUPAT&DocNumber=2389456&TypeFile=html (In Russ.)
  17. Ivanov DI, Nikulin ME. Trabeculotomy ab interno in combined cataract and glaucoma surgery. Results of the optimization. National Journal glaucoma. 2020;19(4):21–32. (In Russ.) doi: 10.25700/NJG.2020.04.03
  18. Fea AM. Phacoemulsification versus phacoemulsification with micro-bypass stent implantation in primary open-angle glaucoma: randomized double-masked clinical trial. J Cataract Refract Surg. 2010;36(3):407–412. doi: 10.1016/j.jcrs.2009.10.031
  19. Samuelson TW, Katz JL, Wells JM, et al. Randomized evaluation of the trabecular micro-bypass stent with phacoemulsification in patients with glaucoma and cataract. Ophthalmology. 2011;118(3): 459–467. doi: 10.1016/j.ophtha.2010.07.007
  20. Craven ER, Katz LJ, Wells JM, et al. Cataract surgery with trabecular micro-bypass stent implantation in patients with mild-to-moderate open-angle glaucoma and cataract: two-year follow-up. J Cataract Refract Surg. 2012;38(8):1339–1345. doi: 10.1016/j.jcrs.2012.03.025
  21. Johnstone MA, Grant WG. Pressure-dependent changes in structures of the aqueous outflow system of human and monkey eyes. Am J Ophthalmol. 1973;75(3):365–383. doi: 10.1016/0002-9394(73)91145-8
  22. Camras LJ, Yuan F, Fan S, et al. A novel Schlemm’s Canal scaffold increases outflow facility in a human anterior segment perfusion model. Invest Ophthalmol Vis Sci. 2012;53:6115–6121. doi: 10.25276/0235-4160-2016-2-28-34
  23. Pfeiffer N, Garcia-Feijoo J, Martinez-de-la-Casa JM, et al. A randomized trial of a schlemm’s canal microstent with phacoemulsification for reducing intraocular pressure in open-angle glaucoma. Ophthalmology. 2015;122(7):1283–1293. doi: 10.1016/j.ophtha.2015.03.031
  24. Grover DS, Smith O, Fellman RL, et al. Gonioscopy assisted transluminal trabeculotomy: an ab interno circumferential trabeculotomy for the treatment of primary congenital glaucoma and juvenile open angle glaucoma. Br J Ophthalmol. 2015;99(8):1092–1096. doi: 10.1136/bjophthalmol-2014-306269
  25. Berlin MS, Rajacich G, Duffy M, et al. Excimer laser photoablation in glaucoma filtering surgery. Am J Ophthalmol. 1987;103(5): 713–714. doi: 10.1016/s0002-9394(14)74339-9
  26. Babighian S, Caretti L, Tavolato M, et al. Excimer laser trabeculotomy vs 180 degrees selective laser trabeculoplasty in primary open-angle glaucoma. A 2-year randomized, controlled trial. Eye. 2010;24:632–638. doi: 10.1038/eye.2009.172
  27. Töteberg-Harms M, Hanson JVM, Funk J. Cataract surgery combined with excimer laser trabeculotomy to lower intraocular pressure: effectiveness dependent on preoperative IOP. BMC Ophthalmol. 2013;13:24. doi: 10.1186/1471-2415-13-24
  28. Toris CB, Yablonski ME, Wang Y-L, Camras CB. Aqueous humor dynamics in the aging human eye. Am J Ophthalmol. 1999;127(4):407–412. doi: 10.1016/s0002-9394(98)00436-x
  29. Hoeh H, Iqbal Ike AK, Grisanti S, et al. Early postoperative safety and surgical outcomes after implantation of a suprachoroidal micro-stent for the treatment of open-angle glaucoma concomitant with cataract surgery. J Cataract Refract Surg. 2013;39(3):431–437. doi: 10.1016/j.jcrs.2012.10.040
  30. García-Feijoo J, Rau M, Grisanti S, et al. Supraciliary micro-stent implantation for open-angle glaucoma failing topical therapy: 1-year results of a multicenter study. Am J Ophthalmol. 2015;159(6): 1075–1081. doi: 10.1016/j.ajo.2015.02.018
  31. Lewis RA. Ab interno approach to the subconjunctival space using a collagen glaucoma stent. J Cataract Refract Surg. 2014;40(8): 1301–1306. doi: 10.1016/j.jcrs.2014.01.032
  32. Schlenker MB, Gulamhusein H, Conrad-Hengerer I, et al. Efficacy, safety, and risk factors for failure of standalone ab interno gelatin microstent implantation versus standalone trabeculectomy. Ophthalmology. 2017;124(11):1579–1588. doi: 10.1016/j.ophtha.2017.05.004
  33. Widder RA, Dietlein TS, Dinslage S, et al. The XEN45 Gel Stent as a minimally invasive procedure in glaucoma surgery: success rates, risk profile, and rates of re-surgery after 261 surgeries. Graefes Arch Clin Exp Ophthalmol. 2018;256(4):765–771. doi: 10.1007/s00417-018-3899-7
  34. Hengerer FH, Kohnen T, Mueller M, Conrad-Hengerer I. Ab interno gel implant for the treatment of glaucoma patients with or without prior glaucoma surgery: 1-year results. J Glaucoma. 2017;26(12):1130–1136. doi: 10.1097/IJG.0000000000000803
  35. Noecker RJ. Applying micropulse transscleral cyclophotocoagulation for early-stage glaucoma. Ophtalmol Times Eur. 2017:30–32.
  36. Maslin JS, Chen PP, Sinard J, et al. Histopathologic changes in cadaver eyes after MicroPulse and continuous wave transscleral cyclophotocoagulation. Canadian Journal of Ophthalmology. 2020;55(4):330–335. doi: 10.1016/j.jcjo.2020.03.010
  37. Liu G-J, Mizukawa A, Okisaka S. Mechanism of intraocular pressure decrease after contact transscleral continuous-wave Nd: YAG laser cyclophotocoagulation. Ophthalmic Res. 1994;26(2):65–79. doi: 10.1159/000267395
  38. iridex.com [Internet]. Johnstone M, Murray J. Transcleral Laser Induces Aqueous Outflow Pathway Motion & Reorganization. AGS2017; Coronado, CA2017. Available at: https://iridex.com/portals/0/pdf/Transcleral-induces-aqueous-outflow-pathway-motion-and-reorganization-Dr.pdf
  39. Khodzhaev NS, Sidorova AV, Starostina AV, Eliseeva MA. Micropulse transscleral cyclophotocoagulation for the treatment of glaucoma. Russian Ophthalmological Journal. 2020;13(2):105–111. (In Russ.) doi: 10.21516/2072-0076-2020-13-2-105-111
  40. Ishida K. Update on results and complications of cyclophotocoagulation. Curr Opin Ophthalmol. 2013;24(2):102–110. doi: 10.1097/ICU.0b013e32835d9335
  41. Uram M. Ophthalmic laser microendoscope ciliary process ablation in the management of neovascular glaucoma. Ophthalmology. 1992;99(12):1823–1828. doi: 10.1016/s0161-6420(92)31718-x
  42. Walland MJ. Diode laser cyclophotocoagulation: Longer term follow up of a standardized treatment protocol. Clin Exp Ophthalmol. 2000;28(4):263–267. doi: 10.1046/j.1442-9071.2000.00320.x
  43. Pantcheva MB, Kahook MY, Schuman JS, Noecker RJ. Comparison of acute structural and histopathological changes in human autopsy eyes after endoscopic cyclophotocoagulation and trans-scleral cyclophotocoagulation. Br J Ophthalmol. 2007;91:248–252. doi: 10.1136/bjo.2006.103580
  44. Boiko EV, Kulikov AN, Skvortsov VYu. Comparative evaluation of diode laser thermotherapy and laser coagulation as methods of cyclodestruction (experimental study). Practical medicine. 2012;1: 175–179. (In Russ.)
  45. Schlote T, Beck J, Rohrbach JM, Funk RHW. Alteration of the vascular supply in the rabbit ciliary body by transscleral diode laser cyclophotocoagulation. Graefes Arch Clin Exp Ophthalmol. 2001;239:53–58. doi: 10.1007/pl00007898
  46. Lin SC, Chen MJ, Lin MS, et al. Vascular effects on ciliary tissue from endoscopic versus trans-scleral cyclophotocoagulation. Br J Ophthalmol. 2006;90:496–500. doi: 10.1136/bjo.2005.072777
  47. Francis BA, Kawji AS, Vo NT, et al. Endoscopic cyclophotocoagulation (ECP) in the management of uncontrolled glaucoma with prior aqueous tube shunt. J Glaucoma. 2011;20(8):523–527. doi: 10.1097/IJG.0b013e3181f46337
  48. Francis BA, Berke SJ, Dustin L, Noecker R. Endoscopic cyclophotocoagulation combined with phacoemulsification versus phacoemulsification alone in medically controlled glaucoma. J Cataract Refract Surg. 2014;40(8):1313–1321. doi: 10.1016/j.jcrs.2014.06.021
  49. Lima FEL, de Carvalho DM, de Avila MP. Phacoemulsification and endoscopic cyclophotocoagulation as primary surgical procedure in coexisting cataract and glaucoma. Arq Bras Oftalmol. 2010;73(5):419–422. doi: 10.1590/s0004-27492010000500006
  50. Lindfield D, Ritchie RW, Griffiths MF. “Phaco-ECP”: Combined endoscopic cyclophotocoagulation and cataract surgery to augment medical control of glaucoma. BMJ Open. 2012;2(3):e000578. doi: 10.1136/bmjopen-2011-000578
  51. Sun W, Yu C-Y, Tong J-P. A review of combined phacoemulsification and endoscopic cyclophotocoagulation: efficacy and safety. Int J Ophthalmol. 2018;11(8):1396–1402. doi: 10.18240/ijo.2018.08.23
  52. Clement CI, Kampougeris G, Ahmed F, et al. Combining phacoemulsification with endoscopic cyclophotocoagulation to manage cataract and glaucoma. Clin Exp Ophthalmol. 2013;41(6):546–551. doi: 10.1111/ceo.12051
  53. Morales J, Al Qahtani M, Khandekar R, et al. Intraocular pressure following phacoemulsification and endoscopic cyclophotocoagulation for advanced glaucoma: 1-year outcomes. J Glaucoma. 2015;24(6): e157–e162. doi: 10.1097/IJG.0000000000000228
  54. Sheybani A, Saboori M, Kim JM, et al. Effect of endoscopic cyclophotocoagulation on refractive outcomes when combined with cataract surgery. Can J Ophthalmol. 2015;50(3):197–201. doi: 10.1016/j.jcjo.2015.03.006
  55. Wang JC-C, Campos-Möller X, Shah M, et al. Effect of endocyclophotocoagulation on refractive outcomes in angle-closure eyes after phacoemulsification and posterior chamber intraocular lens implantation. J Cataract Refract Surg. 2016;42(1):132–137. doi: 10.1016/j.jcrs.2015.07.046
  56. Kang S, Luk S, Han H, et al. Refractive outcome of combined phacoemulsification and endoscopic cyclophotocoagulation. Int Ophthalmol. 2017;37(6):1311–1317. doi: 10.1007/s10792-016-0411-4
  57. Uram M. Combined phacoemulsification, endoscopic ciliary process photocoagulation, and intraocular lens implantation in glaucoma management. Ophthalmic Surg. 1995;26(4):346–352. doi: 10.3928/1542-8877-19950701-17
  58. Roberts SJ, Mulvahill M, SooHoo JR, et al. Efficacy of combined cataract extraction and endoscopic cyclophotocoagulation for the reduction of intraocular pressure and medication burden. Int J Ophthalmol. 2016;9(5):693–698. doi: 10.18240/ijo.2016.05.09
  59. Siegel MJ, Boling WS, Faridi OS, et al. Combined endoscopic cyclophotocoagulation and phacoemulsification versus phacoemulsification alone in the treatment of mild to moderate glaucoma. Clin Experiment Ophthalmol. 2015;43(6):531–539. doi: 10.1111/ceo.12510
  60. Tomilova EV. Remote results of trabeculotomy ab interno performed simultaneously with cataract phacoemulsification. Practical medicine. Ophthalmology. 2016;6;186–190.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Figure. Comparative review of the performance of different MIGS methods

Download (204KB)

Copyright (c) 2022 ECO-vector LLC



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies