The use of optical coherence tomography angiography in patients with chiasmal compression (literature review)

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access


Optical coherence tomography (OCT) is currently the leading method for the observation and evaluation of microstructural changes in the retina in vivo. In recent years, OCT has been used in clinical practice to monitor the progression of compressive optic neuropathy in patients with chiasmal-sellar region neoplasms. The results obtained in the course of the studies opened up new opportunities for studying the pathogenesis of the development of compressive optic neuropathy in patients of this group. The advent of OCT-angiography (OCTA), developed on the basis of OCT, made it possible to study changes in the blood flow of the radial peripapillary capillary network, superficial and deep capillary plexuses, which opens up many opportunities for further research into the pathogenesis of visual impairment in this group of patients, prognosis of the development of the disease, and selection optimal terms of treatment. The literature review presents and analyzes the currently available results of the use of OCTA in patients with chiasmal compression.

Full Text

Restricted Access

About the authors

Natalia A. Gavrilova

A.I. Evdokimov Moscow State University of Medicine and Dentistry

ORCID iD: 0000-0003-0368-296X

Dr. Sci. (Med.), Professor, Head of the Department of Eye Diseases

Russian Federation, Moscow

Anastasiia V. Kuzmina

A.I. Evdokimov Moscow State University of Medicine and Dentistry

Author for correspondence.
ORCID iD: 0000-0002-3065-1563

Postgraduate Student

Russian Federation, Moscow


  1. Kutin MA, Kalinin PL, Kadashev BA, et al. Decompression of optic canals in the surgery of neoplasms of the chiasmatic region. Bulletin of Neurology, Psychiatry and Neurosurgery. 2018;(3):11–17. (In Russ.)
  2. Česák T, Póczoš P, Adamkov J, et al. Microsurgical versus endoscopic surgery for non-functioning pituitary adenomas: A retrospective study. Croat Med J. 2020;61(5):410–421. doi: 10.3325/cmj.2020.61.410
  3. Giammattei L, Starnoni D, Cossu G, et al. Surgical management of tuberculum sellae meningiomas: Myths, facts, and controversies. Acta Neurochir. 2020;162:631–640. doi: 10.1007/s00701-019-04114-w
  4. Česák T, Náhlovský J, Hosszu T, et al. Longitudinal monitoring of the growth of post-operation. Cesk Slov Neurol N. 2009;105(2): 115–124. (In Czech.)
  5. Romano A, Ganau M, Zaed I, et al. Primary endoscopic management of apoplexy in a giant pituitary adenoma. World Neurosurg. 2020;142:312–313. doi: 10.1016/j.wneu.2020.07.059
  6. Jacob M, Raverot G, Jouanneau E, et al. Predicting visual outcome after treatment of pituitary adenomas with optical coherence tomography. Am J Ophthalmol. 2009;147(1):64–70. doi: 10.1016/j.ajo.2008.07.016
  7. Cennamo G, Auriemma RS, Cardone D, et al. Evaluation of the retinal nerve fibre layer and ganglion cell complex thickness in pituitary macroadenomas without optic chiasmal compression. Eye. 2015;29:797–802. doi: 10.1038/eye.2015.35
  8. Tieger MG, Hedges TR III, Ho J, et al. Ganglion cell complex loss in chiasmal compression by brain tumors. J Neuroophthalmol. 2017;37(1):7–12. doi: 10.1097/WNO.0000000000000424
  9. Phal PM, Steward C, Nichols AD, et al. Assessment of Optic Pathway Structure and Function in Patients with Compression of the Optic Chiasm: A Correlation with Optical Coherence Tomography. Investig Ophthalmol Vis Sci. 2016;57:3884–3890. doi: 10.1167/iovs.15-18734
  10. Kurysheva NI. Oct angiography and its role in the study of retinal microcirculation in glaucoma (part one). Russian Ophthalmological Journal. 2018;11(2):82–86. (In Russ.) doi: 10.21516/2072-0076-2018-11-2-82-86
  11. Liu C-H, Kao L-Y, Sun M-H, et al. Retinal Vessel Density in Optical Coherence Tomography Angiography in Optic Atrophy after Nonarteritic Anterior Ischemic Optic Neuropathy. J Ophthalmol. 2017;2017:9632647. doi: 10.1155/2017/9632647
  12. Augstburger E, Zeboulon P, Keilani C, et al. Retinal and Choroidal Microvasculature in Nonarteritic Anterior Ischemic Optic Neuropathy: An Optical Coherence Tomography Angiography Study. Investig Ophthalmol Vis Sci. 2018;59:870–877. doi: 10.1167/iovs.17-22996
  13. Kwapong WR, Peng C, He Z, et al. Altered Macular Microvasculature in Neuromyelitis Optica Spectrum Disorders. Am J Ophthalmol. 2018;192:47–55. doi: 10.1016/j.ajo.2018.04.026
  14. Rogaczewska M, Michalak S, Stopa M. Macular vessel density differs in multiple sclerosis and neuromyelitis optica spectrum disorder: An optical coherence tomography angiography study. PLoS One. 2021;16(6): e0253417. doi: 10.1371/journal.pone.0253417
  15. Mammo Z, Heisler M, Balaratnasingam C, et al. Quantitative Optical Coherence Tomography Angiography of Radial Peripapillary Capillaries in Glaucoma, Glaucoma Suspect, and Normal Eyes. Am J Ophthalmol. 2016;170:41–49. doi: 10.1016/j.ajo.2016.07.015
  16. Monteiro MLR, Hokazono K, Fernandes DB, et al. Evaluation of inner retinal layers in eyes with temporal hemianopic visual loss from chiasmal compression using optical coherence tomography. Investig Ophthalmol Vis Sci. 2014;55:3328–3336. doi: 10.1167/iovs.14-14118
  17. De Araujo RB, Oyamada MK, Zacharias LC, et al. Morphological and functional inner and outer retinal layer abnormalities in eyes with permanent temporal hemianopia from chiasmal compression. Front Neurol. 2017;8:619. doi: 10.3389/fneur.2017.00619
  18. Dinkin M. Trans-synaptic retrograde degeneration in the human visual system: Slow, silent, and real. Curr Neurol Neurosci. 2017;17:16. doi: 10.1007/s11910-017-0725-2
  19. Cennamo G, Solari D, Montorio D, et al. The role of OCT-angiography in predicting anatomical and functional recovery after endoscopic endonasal pituitary surgery: A 1-year longitudinal study. PLoS One. 2021;16(12): e0260029. doi: 10.1371/journal.pone.0260029
  20. Ohkubo S, Higashide T, Takeda H, et al. Relationship between macular ganglion cell complex parameters and visual field parameters after tumor resection in chiasmal compression. Jpn J Ophthalmol. 2012;56:68–75. doi: 10.1007/s10384-011-0093-4
  21. Danesh-Meyer HV, Carroll SC, Foroozan R, et al. Relationship between retinal nerve fiber layer and visual field sensitivity as measured by optical coherence tomography in chiasmal compression. Investig Ophthalmol Vis Sci. 2006;47:4827–4835. doi: 10.1167/iovs.06-0327
  22. Garcia T, Sanchez S, Litré CF, et al. Prognostic value of retinal nerve fiber layer thickness for postoperative peripheral visual field recovery in optic chiasm compression. J Neurosurg. 2014;121(1): 165–169. doi: 10.3171/2014.2.JNS131767
  23. Moon CH, Hwang SC, Ohn YH, Park TK. The time course of visual field recovery and changes of retinal ganglion cells after optic chiasmal decompression. Investig Ophthalmol Vis Sci. 2011;52:7966–7973. doi: 10.1167/iovs.11-7450
  24. Kim KH, Kim US. Optical coherence tomography angiography in pituitary tumor. Neurology. 2017;89(12):1307–1308. doi: 10.1212/WNL.0000000000004397
  25. Chen JJ, AbouChehade JE, Iezzi R Jr, et al. Optical Coherence Angiographic Demonstration of Retinal Changes From Chronic Optic Neuropathies. Neuro-Ophthalmology. 2017;41(2):76–83. doi: 10.1080/01658107.2016.1275703
  26. Higashiyama T, Ichiyama Y, Muraki S, et al. Optical Coherence Tomography Angiography of Retinal Perfusion in Chiasmal Compression. Ophthalmic Surg Lasers Imaging Retina. 2016;47(8):724–729. doi: 10.3928/23258160-20160808-05
  27. Lee G-I, Park K-A, Oh S-Y, Kong D-S. Analysis of Optic Chiasmal Compression Caused by Brain Tumors Using Optical Coherence Tomography Angiography. Sci Rep. 2020;10:2088. doi: 10.1038/s41598-020-59158-1
  28. Lee EJ, Kim J-A, Kim T-W, et al. Glaucoma-like Parapapillary Choroidal Microvasculature Dropout in Patients with Compressive Optic Neuropathy. Ophthalmology. 2020;127(12):1652–1662. doi: 10.1016/j.ophtha.2020.06.001
  29. Lee S, Kim S-J, Yu YS, et al. Prognostic factors for visual recovery after transsphenoidal pituitary adenectomy. Br J Neurosurg. 2013;27(4):425–429. doi: 10.3109/02688697.2013.767316
  30. Al-Louzi O, Prasad S, Mallery RM. Utility of optical coherence tomography in the evaluation of sellar and parasellar mass lesions. Curr Opin Endocrinol Diabetes Obes. 2018;25(4):274–284. doi: 10.1097/MED.0000000000000415
  31. Jia Y, Simonett JM, Wang J, et al. Wide-field OCT angiography investigation of the relationship between radial peripapillary capillary plexus density and nerve fiber layer thickness. Investig Opthalmol Vis Sci. 2017;58(12):5188–5194. doi: 10.1167/iovs.17-22593
  32. Mansoori T, Sivaswamy J, Gamalapati JS, et al. Measurement of Radial Peripapillary Capillary Density in the Normal Human Retina Using Optical Coherence Tomography Angiography. J Glaucoma. 2017;26(3):241–246. doi: 10.1097/IJG.0000000000000594
  33. Yu PK, Balaratnasingam C, Xu J, et al. Label-Free Density Measurements of Radial Peripapillary Capillaries in the Human Retina. PLoS One. 2015;10: e0135151. doi: 10.1371/journal.pone.0135151
  34. Yu PK, Cringle SJ, Yu D-Y. Correlation between the radial peripapillary capillaries and the retinal nerve fibre layer in the normal human retina. Exp Eye Res. 2014;129:83–92. doi: 10.1016/j.exer.2014.10.020
  35. Zhang L, Xu L, Zhang J-S, et al. Cotton-wool spot and optical coherence tomography of a retinal nerve fiber layer defect. Arch Ophthalmol. 2012;130(7):913. doi: 10.1001/archophthalmol.2011.1567
  36. Zabel P, Kaluzny JJ, Wilkosc-Debczynska M, et al. Comparison of Retinal Microvasculature in Patients With Alzheimer’s Disease and Primary Open-Angle Glaucoma by Optical Coherence Tomography Angiography. Investig Ophthalmol Vis Sci. 2019;60(10):3447–3455. doi: 10.1167/iovs.19-27028
  37. Lee G-I, Park K-A, Oh SY, Kong D-S. Changes in parafoveal and peripapillary perfusion after decompression surgery in chiasmal compression due to pituitary tumors. Sci Rep. 2021;11:3464. doi: 10.1038/s41598-021-82151-1
  38. Ben Ghezala I, Haddad D, Blanc J, et al. Peripapillary Microvascularization Analysis Using Swept-Source Optical Coherence Tomography Angiography in Optic Chiasmal Compression. J Ophthalmol. 2021;2021:5531959. doi: 10.1155/2021/5531959
  39. Parrozzani R, Leonardi F, Frizziero L, et al. Retinal vascular and neural remodeling secondary to optic nerve axonal degeneration. Ophthalmology Retina. 2018;2(8):827–835. doi: 10.1016/j.oret.2017.12.001
  40. Akashi A, Kanamori A, Ueda K, et al. The detection of macular analysis by SD-OCT for optic chiasmal compression neuropathy and nasotemporal overlap. Investig Opthalmol Vis Sci. 2014;55(7): 4667–4672. doi: 10.1167/iovs.14-14766
  41. Moon CH, Lee SH, Kim B-T, et al. Diagnostic ability of retinal nerve fiber layer thickness measurements and neurologic hemifield test to detect chiasmal compression. Investig Opthalmol Vis Sci. 2012;53(9):5410–5415. doi: 10.1167/iovs.12-9905
  42. Fard MA, Jalili J, Sahraiyan A, et al. Optical coherence tomography angiography in optic disc swelling. Am J Ophthalmol. 2018;191:116–123. doi: 10.1016/j.ajo.2018.04.017
  43. Tuntas Bilen F, Atilla H. Peripapillary vessel density measured by optical coherence tomography angiography in idiopathic intracranial hypertension. J Neuroophthalmol. 2019;39(3):319–323. doi: 10.1097/WNO.0000000000000745
  44. Wang G, Gao J, Yu W, et al. Changes of Peripapillary Region Perfusion in Patients with Chiasmal Compression Caused by Sellar Region Mass. J Ophthalmol. 2021;2021:5588077. doi: 10.1155/2021/5588077
  45. Dallorto L, Lavia C, Jeannerot A-L, et al. Retinal microvasculature in pituitary adenoma patients: is optical coherence tomography angiography useful? Acta Ophthalmol. 2019;98(5):585–592. doi: 10.1111/aos.14322
  46. Suzuki ACF, Zacharias LC, Preti RC, et al. Circumpapillary and macular vessel density assessment by optical coherence tomography angiography in eyes with temporal hemianopia from chiasmal compression. Correlation with retinal neural and visual field loss. Eye. 2020;34:695–703. doi: 10.1038/s41433-019-0564-2
  47. Wang X, Chou Y, Zhu H, et al. Retinal Microvascular Alterations Detected by Optical Coherence Tomography Angiography in Nonfunctioning Pituitary Adenomas. Transl Vis Sci Technol. 2022;11(1):5. doi: 10.1167/tvst.11.1.5
  48. Melmed S. Pathogenesis of pituitary tumors. Nat Rev Endocrinol. 2011;7:257–266. doi: 10.1038/nrendo.2011.40
  49. Greenman Y, Stern N. Non-functioning pituitary adenomas. Best PRACTt Res Clin Endocrinol Metab. 2009;23(5):625–638. doi: 10.1016/j.beem.2009.05.005
  50. Di Somma C, Scarano E, de Alteriis G, et al. Is there any gender difference in epidemiology, clinical presentation and co-morbidities of non-functioning pituitary adenomas? A prospective survey of a national referral center and review of the literature. J Endocrinol Invest. 2021;44:957–968. doi: 10.1007/s40618-020-01379-2
  51. Wons J, Pfau M, Wirth MA, et al. Optical coherence tomography angiography of the foveal avascular zone in retinal vein occlusion. Ophthalmologica. 2016;235(4):195–202. doi: 10.1159/000445482
  52. Ragkousis A, Kozobolis V, Kabanarou S, et al. Vessel density around foveal avascular zone as a potential imaging biomarker for detecting preclinical diabetic retinopathy: an optical coherence tomography angiography study. Semin Ophthalmol. 2020;35(5–6): 316–323. doi: 10.1080/08820538.2020.1845386
  53. Krawitz BD, Mo S, Geyman LS, et al. Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthycontrols measured by optical coherence tomography angiography. Vision Res. 2017;139:177–186. doi: 10.1016/j.visres.2016.09.019
  54. Neroev VV, Okhotsimskaya TD, Fadeeva VA. An account of retinal microvascular changes in diabetes acquired by OCT-angiography. Russian Ophthalmological Journal. 2017;10(2):40–45. (In Russ.) doi: 10.21516/2072-0076-2017-10-2-40-45
  55. Burnasheva MA, Kulikov AN, Maltsev DS. Personalized analysis of foveal avascular zone with optical coherence tomography angiography. Ophthalmology Journal. 2017;10(4):32–40. (In Russ.) doi: 10.17816/OV10432-40

Supplementary files

There are no supplementary files to display.

Copyright (c) 2022 Gavrilova N.A., Kuzmina A.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.

This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies