Corneal collagen cross-linking in mixed etiology keratitis treatment: a case of successful use

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Acanthamoeba keratitis with bacterial, fungal superinfection or without it leads to development of an aggressive and long-standing corneal inflammation; up to now, the efficacy of its treatment stays doubtful and demands further investigation. For a long time, there were discussions on the possibility and expediency of corneal collagen cross-linking (PACK-CXL – photo activated chromophore for keratitis) in patients with bacterial, fungal and Acanthamoeba keratitis. This article presents a clinical case of effective treatment of mixed etiology keratitis by multiple high fluence accelerated PACK-CXL in a patient with severe local toxico-allergic reaction.

Full Text

Restricted Access

About the authors

Kirill V. Khripun

City Multifield Hospital No. 2

Email: kirdoc@mail.ru

MD, Candidate of Medical Sciences, Ophthalmologist, Head of Microsurgery Department No. 3

Russian Federation, Saint Petersburg

Yulia V. Kobinets

Academican I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of the Russian Federation

Author for correspondence.
Email: juliakobinets@ya.ru

Second Year Ophthalmology Resident, Department of Ophthalmology

Russian Federation, Saint Petersburg

Pavel A. Danilov

Academican I.P. Pavlov First St. Petersburg State Medical University of the Ministry of Healthcare of the Russian Federation

Email: pdanilov1989@gmail.com

Post-graduate Student of the Department of Ophthalmology with the clinic

Russian Federation, Saint Petersburg

Elizaveta S. Rozhdestvenskaya

City Multifield Hospital No. 2

Email: shorie48@gmail.com

MD, Ophthalmologist, Microsurgery Department No. 3

Russian Federation, Saint Petersburg

Yulduz Sh. Nizametdinova

City Multifield Hospital No. 2

Email: yulduzik55@gmail.com

MD, ophtalmologist. Microsurgery Department No. 3.

Russian Federation, Saint Petersburg

References

  1. Shi L, Stachon T, Seitz B, et al. The effect of antiamoebic agents on viability, proliferation and migration of human epithelial cells, keratocytes and endothelial cells, in vitro. Curr Eye Res. 2018;43(6): 725-733. https://doi.org/10.1080/02713683.2018.1447674.
  2. Szentmáry N, Goebels S, Matoula P, et al. [Acanthamoeba keratitis – a rare and often late diagnosed disease. (In German)]. Klin Monbl Augenheilkd. 2012;229(5):521-528. https://doi.org/10.1055/s-0031-1299539.
  3. Szentmáry N, Daas L, Shi L, et al. Acanthamoeba keratitis – clinical signs, differential diagnosis and treatment. J Curr Ophthalmol. 2019;31(1):16-23. https://doi.org/10.1016/j.joco.2018.09. 008.
  4. Lim CC, Peng IC, Huang YH. Safety of intrastromal injection of polyhexamethylene biguanide and propamidine isethionate in a rabbit model. J Adv Res. 2019;22:1-6. https://doi.org/10.1016/j.jare.2019.11.012.
  5. Новиков С.А., Захарова О.А., Жабрунова М.А., и др. Коллагеновый кросслинкинг: новые возможности в лечении патологии роговицы // Офтальмологические ведомости. – 2014. – Т. 7. – № 2. – С. 50–59. [Novikov SA, Zakharova OA, Zhabrunova MA, et al. Сollagen cross-linking: new opportunities in treatment of corneal diseases. Ophthalmology journal. 2014;7(2):50-59. (In Russ.)]. https://doi.org/10.17816/OV2014250-59.
  6. Wollensak G, Spoerl E, Seiler T. Riboflavin ultraviolet-A induced collagen crosslinking for the treatment of keratoconus. Am J Ophthalmol. 2003;135(5):620-627. https://doi.org/10.1016/s0002-9394(02)02220-1.
  7. Mencucci R, Marini M, Paladini I, et al. Effects of riboflavin/UVA corneal cross-linking on keratocytes and collagen fibres in human cornea. Clin Exp Ophthalmol. 2010;38(1):49-56. https://doi.org/10.1111/j.1442-9071.2010.02207.x.
  8. Martins SA, Combs JC, Noguera G, et al. Antimicrobial efficacy of riboflavin UVA combination (365 nm) in vitro for bacterial and fungal isolates: a potential new treatment for infectious keratitis. Invest Ophthalmol Vis Sci. 2008;49(8):3402-3408. https://doi.org/10.1167/iovs.07-1592.
  9. Schrier А, Greebel G, Attia H, et al. In vitro antimicrobial efficacy of riboflavin and ultraviolet light on Staphylococcus aureus, methicillin-resistant Staphylococcus aureus, and Pseudomonas aeruginosa. J Refract Surg. 2009;25(9):799-802. https://doi.org/10.3928/1081597X-20090813-07.
  10. Spoerl E, Huhle M, Seiler T. Induction of crosslinks in corneal tissue. Exp Eye Res. 1998;66(1):97-103. https://doi.org/10.1006/exer.1997.0410.
  11. Spoerl E, Wollensak G, Seiler T. Increased resistance of crosslinked cornea against enzymatic digestion. Curr Eye Res. 2004;29(1): 35-40. https://doi.org/10.1080/02713680490513182.
  12. Corbin F. Pathogen inactivation of blood components: current status and introduction of an approach using riboflavin as a photosensitizer. Int J Hematol. 2002;76(Suppl 2):253-257. https://doi.org/10.1007/BF03165125.
  13. Myung D, Manche EE, Tabibian D, Hafezi F. The future of corneal cross-linking. In: Sinjab MM, Cummings AB. Corneal Collagen Cross Linking. Springer Link; 2017. Р. 269-292. https://doi.org/10.1007/978-3-319-39775-7_9.
  14. Pettersson MN, Lagali N, Mortensen J, et al. High fluence PACK-CXL as adjuvant treatment for advanced Acanthamoeba keratitis. Am J Ophthalmol Case Rep. 2019;15:100499. https://doi.org/10.1016/j.ajoc.2019.100499.
  15. Padzik M, Baltaza W, Conn DB, et al. Effect of povidone iodine, chlorhexidine digluconate and toyocamycin on amphizoic amoebic strains, infectious agents of Acanthamoeba keratitis – a growing threat to human health worldwide. Ann Agric Environ Med. 2018;25(4):725-731. https://doi.org/10.26444/aaem/ 99683.
  16. Nakagawa H, Koike N, Ehara T, et al. Corticosteroid eye drop instillation aggravates the development of Acanthamoeba keratitis in rabbit corneas inoculated with Acanthamoeba and bacteria. Sci Rep. 2019;9(1):12821. https://doi.org/10.1038/s41598-019-49128-7.
  17. Papa V, Rama P, Radford C, et al. Acanthamoebakeratitis therapy: time to cure and visual outcome analysis for different antiamoebic therapies in 227 cases. Br J Ophthalmol. 2019;104(4):575-581. https://doi.org/10.1136/bjophthalmol-2019-314485.
  18. Lang PZ, Hafezi NL, Khandelwal SS, et al. Comparative functional outcomes after corneal crosslinking using standard, accelerated, and accelerated with higher total fluence protocols. Cornea. 2019;38(4):433-441 https://doi.org/10.1097/ICO.0000000000001878.
  19. Mesen A, Bozkurt B, Kamis U, Okudan S. Correlation of demarcation line depth with medium-term efficacy of different corneal collagen cross-linking protocols in keratoconus. Cornea. 2018;37(12):1511-1516. https://doi.org/10.1097/ICO.0000000000001733.
  20. Knyazer B, Krakauer Y, Baumfeld Y, et al. Accelerated corneal cross-linking with photoactivated chromophore for moderate therapy-resistant infectious keratitis. Cornea. 2018;37(4):528-531. https://doi.org/10.1097/ICO.0000000000001498.
  21. Ting DS, Henein C, Said DG, Dua HS. Photoactivated chromophore for infectious keratitis – Corneal cross-linking (PACK-CXL): A systematic review and meta-analysis. Ocul Surf. 2019;17(4): 624-634. https://doi.org/10.1016/j.jtos.2019.08.006.
  22. Idrus EA, Utti EM, Mattila JS, Krootila K. Photoactivated chromophore corneal cross-linking (PACK-CXL) for treatment of severe keratitis. Acta Ophthalmol. 2019;97(7):721-726. https://doi.org/10.1111/aos.14001.
  23. Zloto O, Barequet IS, Weissmanet A, et al. Does PACK-CXL change the prognosis of resistant infectious keratitis? J Refract Surg. 2018;34(8):559-563. https://doi.org/10.3928/1081597X-20180705-01.
  24. Hsia YC, Moe CA, Lietmanet TM, al. Expert practice patterns and opinions on corneal cross-linking for infectious keratitis. BMJ Open Ophthalmol. 2018;3(1): e000112. https://doi.org/10.1136/bmjophth-2017-000112.
  25. Anitua E, Alonso R, Girbau C, et al. Antibacterial effect of plasma rich in growth factors (PRGF®-Endoret®) against Staphylococcus aureus and epidermidis strains. Clin Exp Dermatol. 2012;37(6):652-657. https://doi.org/10.1111/j.1365-2230. 2011.04303.x.
  26. Alio JL, Rodriguez AE, Abdelghanyet AA, al. Autologous Platelet-rich plasma eye drops for the treatment of Post-LASIK chronic ocular surface syndrome. J Ophthalmol. 2017;2017:2457620. https://doi.org/10.1155/2017/2457620.
  27. Dhurat R, Sukesh MS. Principles and methods of preparation of platelet-rich plasma: a review and author’s perspective. J Cutan Aesthet Surg. 2014;7(4):189-197. https://doi.org/10.4103/0974-2077.150734.
  28. Hafezi F. Limitation of collagen cross-linking with hypoosmolar riboflavin solution: Failure in an extremely thin cornea. Cornea. 2011;30(8):917-919. https://doi.org/10.1097/ICO.0b013e31820143d1.
  29. Скрябина Е.В., Астахов Ю.С., Коненкова Я.С., и др. Акантамёбный кератит. Обзор литературы. Клинические случаи // Офтальмологические ведомости. – 2019. – Т. 12. – № 1. – С. 59-71. [Skryabina YV, Astakhov YuS, Konenkova YaS. Ophthalmology journal. 2019;12(1):59-71. (In Russ.)]. https://doi.org/10.17816/OV2019159-71.

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Patient E, 31 y.o. The condition of the cornea upon admission

Download (166KB)
3. Fig. 2. Anterior segment optical coherence tomography upon admission

Download (329KB)
4. Fig. 3. HRT II Cornea Module. Arrows indicate the supposed Acanthamoeba cysts

Download (421KB)
5. Fig. 4. Toxico-allergic reaction of the eyelids on the 7th day of treatment

Download (237KB)
6. Fig. 5. CL-UVR Rapid device for corneal collagen cross-linking

Download (222KB)
7. Fig. 6. Wessely immune ring formation, 3 weeks from the disease onset

Download (170KB)
8. Fig. 7. Clearing of infiltrate´s central area. The Wessely ring is formed. 5th week from the disease onset

Download (233KB)
9. Fig. 8. A few days before the third PACK-CXL session; а – in the optical zone, the ring-shaped infiltrate acquired more blurred contours; epithelium grows up from the periphery. The Wessely ring is slowly disappearing; b – hyperemia and edema of the eyelids decrease, no crusts and oozing

Download (476KB)
10. Fig. 9. Decreased deepitelization zone. Ingrowth of superficial and deep stromal vessels into the cornea (4-7 o´clock)

Download (197KB)
11. Fig. 10. Increased neovascularization

Download (200KB)
12. Fig. 11. Epithelium edge swelling decreases, increase of transparency of the infiltration area

Download (167KB)
13. Fig. 12. Complete deepitalization area closure, gradual depletion of vessels

Download (187KB)
14. Fig. 13. Further depletion of vessels, cicatricial clouding formation

Download (204KB)
15. Fig. 14. Outcome: nubecula cloudiness of the cornea with “ghost vessels”

Download (179KB)

Copyright (c) 2021 Khripun K.V., Kobinets Y.V., Danilov P.A., Rozhdestvenskaya E.S., Nizametdinova Y.S.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies