Chemical analysis of meibum composition of type 2 diabetes mellitus

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The meibomian glands, by producing a lipid-rich secretion (meibum), are involved in the formation of the lipid layer of the tear film, preventing its evaporation and ensuring the maintenance of ocular surface homeostasis. Meibomian gland dysfunction is a common disease. Numerous clinical studies have pointed to involvement of the meibomian glands in a number of systemic diseases, including diabetes mellitus. Hyperglycemia provokes the development of oxidative stress and metabolic disorders, leading to changes in the anatomical and functional state of the breast, which affects the qualitative and quantitative composition of the secretion. Instrumental methods of meibomian glands assessment reflect their morphofunctional state, and chemo-analytical study of the meibum can serve as a reflection of anatomical and physiological changes of the glands. Proteomic technologies are promising methods for studying the composition of the meibomian glands secretion, allowing us to determine the patterns of changes in the chemical composition of the meibum in patients with diabetes mellitus to detect early signs of the disease and prevent the development of complications.

Full Text

Restricted Access

About the authors

Tatyana N. Safonova

Krasnov Research Institute of Eye Diseases

Email: safotat@mail.ru
ORCID iD: 0000-0002-4601-0904
SPIN-code: 5605-8484

MD, Cand. Sci. (Medicine)

Russian Federation, 11A Rossolimo st., Saint Petersburg, 119021

Galina V. Zaitseva

Krasnov Research Institute of Eye Diseases

Email: privezentseva.galya@mail.ru
ORCID iD: 0000-0001-8575-3076
SPIN-code: 7736-7129

MD, Cand. Sci. (Medicine)

Russian Federation, 11A Rossolimo st., Saint Petersburg, 119021

Ekaterina I. Timoshenkova

Krasnov Research Institute of Eye Diseases

Author for correspondence.
Email: kattim02@list.ru
ORCID iD: 0000-0002-2728-650X

graduate student

Russian Federation, 11A Rossolimo st., Saint Petersburg, 119021

References

  1. Chen J, Nichols KK. Comprehensive shotgun lipidomics of human meibomian gland secretions using MS/MSall with successive switching between acquisition polarity modes. J Lipid Res. 2018;59(11):2223–2236. doi: 10.1194/jlr.D088138
  2. Knop E, Knop N, Millar T, et al. The international workshop on meibomian gland dysfunction: Report of the subcommittee on anatomy, physiology, and pathophysiology of the meibomian gland. Investig Ophthalmol Vis Sci. 2011;52(4):1938–1978. doi: 10.1167/iovs.10-6997c
  3. Butovich IA, Lu H, McMahon A, et al. Biophysical and morphological evaluation of human normal and dry eye meibum using hot stage polarized light microscopy. Invest Ophthalmol Vis Sci. 2014;55(1):87–101. doi: 10.1167/iovs.13-13355
  4. Wickham LA, Gao J, Toda I, et al. Identification of androgen, estrogen and progesterone receptor mRNAs in the eye. Acta Ophthalmol Scand. 2000;78(2):146–153. doi: 10.1034/j.1600-0420.2000.078002146.x
  5. Bron AJ, Tiffany JM. The contribution of meibomian disease to dry eye. Ocul Surf. 2004;2(2):149–165. doi: 10.1016/s1542-0124(12)70150-7
  6. Chung CW, Tigges M, Stone RA. Peptidergic innervation of the primate meibomian gland. Invest Ophthalmol Vis Sci. 1996;37(1): 238–245.
  7. Misra SL, Patel DV, McGhee CNJ, et al. Peripheral neuropathy and tear film dysfunction in type 1 diabetes mellitus. J Diabetes Res. 2014;2014:848659. doi: 10.1155/2014/848659
  8. Kam WR, Sullivan DA. Neurotransmitter influence on human meibomian gland epithelial cells. Invest Ophthalmol Vis Sci. 2011;52(12):8543–8548. doi: 10.1167/iovs.11-8113
  9. Butovich IA. Meibomian glands, meibum, and meibogenesis. Exp Eye Res. 2017;163:2–16. doi: 10.1016/j.exer.2017.06.020
  10. Willcox MDP, Argüeso P, Georgiev GA, et al. TFOS DEWS II tear film. Report Ocul Surf. 2017;15(3):366–403. doi: 10.1016/j.jtos.2017.03.006
  11. Yoo Y-S, Park S-K, Hwang H-S, et al. Association of serum lipid level with meibum biosynthesis and meibomian gland dysfunction: A review. J Clin Med. 2022;11(14):4010. doi: 10.3390/jcm11144010
  12. Lam SM, Tong L, Duan X, et al. Extensive characterization of human tear fluid collected using different techniques unravels the presence of novel lipid amphiphiles. J Lipid Res. 2014;55(2):289–298. doi: 10.1194/jlr.M044826
  13. McMahon A, Lu H, Butovich IA. The spectrophotometric sulfo-phospho-vanillin assessment of total lipids in human meibomian gland secretions. Lipids. 2013;48(5):513–525. doi: 10.1007/s11745-013-3755-9
  14. Palaniappan CK, Schutt BS, Brauer L, et al. Effects of keratin and lung surfactant proteins on the surface activity of meibomian lipids. Invest Ophthalmol Vis Sci. 2013;54(4):2571–2581. doi: 10.1167/iovs.12-11084
  15. Parfitt GJ, Xie Y, Reid KM, et al. A novel immunofluorescent computed tomography (ICT) method to localise and quantify multiple antigens in large tissue volumes at high resolution. PLoS One. 2012;7(12):e53245. doi: 10.1371/journal.pone.0053245
  16. Borchman D, Yappert MC, Foulks GN. Changes in human meibum lipid with meibomian gland dysfunction using principal component analysis. Exp Eye Res. 2010;91(2):246–256. doi: 10.1016/j.exer.2010.05.014
  17. Guillon M, Maissa C, Wong S. Eyelid margin modification associated with eyelid hygiene in anterior blepharitis and meibomian gland dysfunction. Eye Contact Lens. 2012;38(5):319–325. doi: 10.1097/ICL.0b013e318268305a
  18. Arita R, Mori N, Shirakawa R, et al. Meibum color and free fatty acid composition in patients with meibomian gland dysfunction. Invest Ophthalmol Vis Sci. 2015;56(8):4403–4412. doi: 10.1167/iovs.14-16254
  19. Avetisova SA, Egorova EA, Moshetovoi LK. Ophthalmology: A National Guideline. Moscow, 2008. Part 5.4. P. 342–347. (In Russ.)
  20. Maychuk YuF, Mironkova EA. Classification of meibomian glands dysfunction associated with dry eye syndrome; pathogenic approaches to complex treatment. Russian Medical Journal. 2007;8(4): 169–172. (In Russ.)
  21. Suzuki T, Kitazawa K, Cho Y, et al. Alteration in meibum lipid composition and subjective symptoms due to aging and meibomian gland dysfunction. Ocul Surf. 2022;26:310–317. doi: 10.1016/j.jtos.2021.10.003
  22. Riks IA, Trufanov SV, Boutaba R. Modern approaches to the treatment of meibomian gland dysfunction. The Russian Annals of Ophthalmology. 2021;137(1):130–136. (In Russ.) doi: 10.17116/oftalma2021137011130
  23. Suhalim JL, Parfitt GJ, Cintia YX, et al. Effect of desiccating stress on mouse meibomian gland function. Ocul Surf. 2014;12(1):59–68. doi: 10.1016/j.jtos.2013.08.002
  24. Hwang HS, Parfitt GJ, Brown DJ, Jester JV. Meibocyte differentiation and renewal: Insights into novel mechanisms of meibomian gland dysfunction (MGD). Exp Eye Res. 2017;163:37–45. doi: 10.1016/j.exer.2017.02.008
  25. Schachter SE, Schachter A, Hom MM, Hauswirth SG. Prevalence of MGD, blepharitis, and demodex in an optometric practice. Investig Ophthalmol Vis Sci. 2014;55(13):49–49.
  26. Alghamdi WM, Markoulli M, Holden BA, Papas EB. Impact of duration of contact lens wear on the structure and function of the meibomian glands. Ophthalmic Physiol Opt. 2016;36(2):120–131. doi: 10.1111/opo.12278
  27. Baum JL, Bull MJ. Ocular manifestations of the ectrodactyly, ectodermal dysplasia, cleft lip-palate syndrome. Am J Ophthalmol. 1974;78(2):211–216. doi: 10.1016/0002-9394(74)90078-6
  28. Erickson RP, Dagenais SL, Caulder MS, et al. Clinical heterogeneity in lymphoedema-distichiasis with FOXC2 truncating mutations. J Med Genet. 2001;38(11):761–766. doi: 10.1136/jmg.38.11.761
  29. Samarawickrama C, Chew S, Watson S. Retinoic acid and the ocular surface. Surv Ophthalmol. 2015;60(3):183–195. doi: 10.1016/j.survophthal.2014.10.001
  30. Jester JV, Nicolaides N, Kiss-Palvolgyi I, Smith RE. Meibomian gland dysfunction. II. The role of keratinization in a rabbit model of MGD. Invest Ophthalmol Vis Sci. 1989;30(5):936–945.
  31. Agnifili L, Fasanella V, Costagliola C, et al. In vivo confocal microscopy of meibomian glands in glaucoma. Br J Ophthalmol. 2013;97(3):343–349. doi: 10.1136/bjophthalmol-2012-302597
  32. Cermak JM, Krenzer KL, Sullivan RM, et al. Is complete androgen insensitivity syndrome associated with alterations in the meibomian gland and ocular surface? Cornea. 2003;22(6):516–521. doi: 10.1097/00003226-200308000-00006
  33. Sullivan DA, Dana R, Sullivan RM, et al. Meibomian gland dysfunction in patients with Sjögren syndrome. Ophthalmic Res. 2018;59(4):193–205. doi: 10.1159/000487487
  34. Robin M, Liang H, Baudouin C, Labbé A. In vivo Meibomian gland imaging techniques: A review of the literature (French translation of the article). J Fr Ophtalmol. 2020;43(6):484–493. doi: 10.1016/j.jfo.2019.10.009
  35. Ban Y, Ogawa Y, Goto E, et al. Tear function and lipid layer alterations in dry eye patients with chronic graft-vs-host disease. Eye (Lond). 2009;23(1):202–208. doi: 10.1038/eye.2008.340
  36. Trubilin VN, Kurenkov VV, Polunina EG, et al. Diagnostic algorithm of meibomian gland dysfunction and water-impregnated form of dry eye syndrome: textbook. Moscow: FMBA, 2018. 17 p. (In Russ.)
  37. Su T-Y, Ho W-T, Chiang S-C, et al. Infrared thermography in the evaluation of meibomian gland dysfunction. J Formos Med Assoc. 2017;116(7):554–559. doi: 10.1016/j.jfma.2016.09.012
  38. Avetisov SE, Novikov IA, Lutsevich EE, Reyn ES. Use of infrared thermography in ophthalmology. The Russian Annals of Ophthalmology. 2017;133(6):99–105. doi: 10.17116/oftalma2017133699-104
  39. Peyman GA, Ingram CP, Montilla LG, Witte RS. A high-resolution 3D ultrasonic system for rapid evaluation of the anterior and posterior segment. Ophthalmic Surg Lasers Imaging. 2012;43(2):143–151. doi: 10.3928/15428877-20120105-01
  40. Trubilin VN, Polunina EG, Markova EYu, et al. Methods of screening for meibomian gland dysfunction. Ophthalmology in Russia. 2016;13(4): 235–240. (In Russ.) doi: 10.18008/1816-5095-2016-4-235-240
  41. Avetisov SÉ, Egorova GB, Kobzova MV, et al. Clinical significance of modern methods of corneal assessment. The Russian Annals of Ophthalmology. 2013;129(5):22–31. (In Russ.)
  42. Yeotikar NS, Zhu H, Markoulli M, et al. Functional and morphologic changes of meibomian glands in an asymptomatic adult population. Invest Ophthalmol Vis Sci. 2016;57(10):3996–4007. doi: 10.1167/iovs.15-18467
  43. Swiderska K, Read ML, Blackie CA, et al. Latest developments in meibography: A review. Ocul Surf. 2022;25:119–128. doi: 10.1016/j.jtos.2022.06.002
  44. Safonova TN, Kintukhina NP. Involutional blepharitis: modern approaches to diagnostic and treatment. The Russian Annals of Ophthalmology. 2018;134(1):43–47. doi: 10.17116/oftalma2018134143-47
  45. Safonova TN, Kintyukhina NP, Sidorov VV, Gladkova OV. Laser doppler flowmetry in assessing the effectiveness of treatment of chronic demodex blefaritis. Russian Ophthalmological Journal. 2017;10(2): 62–66. doi: 10.21516/2072-0076-2017-10-2-62-66
  46. Yoo Y-S, Na K-S, Byun Y-S, et al. Examination of gland dropout detected on infrared meibography by using optical coherence tomography meibography. Ocul Surf. 2017;15(1):130–138.e1. doi: 10.1016/j.jtos.2016.10.001
  47. Beroeva MR, Mkrtumyan AM. The prevalence of diabetes mellitus type 2 in the adult population of Tskhinval. Ehffektivnaya farmakoterapiya. 2020;16(25):20–23. doi: 10.33978/2307-3586-2020-16-25-20-23
  48. Yaribeygi H, Sathyapalan T, Atkin SL, Sahebkar A. Molecular mechanisms linking oxidative stress and diabetes mellitus. Oxid Med Cell Longev. 2020;2020:8609213. doi: 10.1155/2020/8609213
  49. Zhang P, Li T, Wu X, et al. Oxidative stress and diabetes: Antioxidative strategies. Front Med. 2020;14(5):583–600. doi: 10.1007/s11684-019-0729-1
  50. Fève B, Bastard J-P. The role of interleukins in insulin resistance and type 2 diabetes mellitus. Nat Rev Endocrinol. 2009;5(6):305–311. doi: 10.1038/nrendo.2009.62
  51. Xiao J, Li J, Cai L, et al. Cytokines and diabetes research. J Diabetes Res. 2014;2014:920613. doi: 10.1155/2014/920613
  52. Sena CM, Carrilho F, Seiç RM. Endothelial dysfunction in type 2 diabetes: targeting inflammation. In: Lenasi H, editor. Endothelial dysfunction — old concepts and new challenges. London: Intechopen, 2018. Р. 231–249. doi: 10.5772/intechopen.76994
  53. Qatanani M, Lazar MA. Mechanisms of obesity-associated insulin resistance: many choices on the menu. Genes Dev. 2007;21(12): 1443–1455. doi: 10.1101/gad.1550907
  54. Sarniak A, Lipińska J, Tytman K, Lipińska S. Endogenous mechanisms of reactive oxygen species (ROS) generation. Adv Hyg Exp Med. 2016;70:1150–1165. doi: 10.5604/17322693.1224259
  55. Giacco F, Brownlee M. Oxidative stress and diabetic complications. Circ Res. 2010;107(9):1058–1070. doi: 10.1161/CIRCRESAHA.110.223545
  56. Madan R, Gupt B, Saluja S, et al. Coagulation profile in diabetes and its association with diabetic microvascular complications. J Assoc Physicians India. 2010;58:481–484.
  57. Gasparotto J, Girardi CS, Somensi N, et al. Receptor for advanced glycation end products mediates sepsistriggered amyloid-β accumulation, Tau phosphorylation, and cognitive impairment. J Biol Chem. 2018;293(1):226–244. doi: 10.1074/jbc.M117.786756
  58. Feldman EL, Callaghan BC, Pop-Busui R, et al. Diabetic neuropathy. Nat Rev Dis Primers. 2019;5(1):42. doi: 10.1038/s41572-019-0097-9
  59. Sabanayagam C, Chee ML, Banu R, et al. Association of diabetic retinopathy and diabetic kidney disease with all-cause and cardiovascular mortality in a multiethnic Asian population. JAMA Netw Open. 2019;2(3): e191540. doi: 10.1001/jamanetworkopen.2019.1540
  60. Rehman K, Hamid Akash MS. Mechanisms of inflammatory reactions and the development of insulin resistance: how are they interrelated? J Biomed Sci. 2016;23:87. doi: 10.1186/s12929-016-0303-y
  61. Ding J, Liu Y, Sullivan DA. Effects of Insulin and high glucose on human meibomian gland epithelial cells. Invest Ophthalmol Vis Sci. 2015;56(13):7814–7820. doi: 10.1167/iovs.15-18049
  62. Yu T, Han X-G, Gao Y, et al. Morphological and cytological changes of meibomian glands in patients with type 2 diabetes mellitus. Int J Ophthalmol. 2019;12(9):1415–1419. doi: 10.18240/ijo.2019.09.07
  63. Wang H, Zhang B, Zhang Z, et al. Inhibition of Gli1 suppressed hyperglycemia-induced meibomian gland dysfunction by promoting pparγ expression. Biomed Pharmacother. 2022;151:113109. doi: 10.1016/j.biopha.2022.113109
  64. Qu J-Y, Xiao Y-T, Zhang Y-Y, et al. Zhang. Hedgehog signaling pathway regulates the proliferation and differentiation of rat meibomian gland epithelial cells. Invest Ophthalmol Vis Sci. 2021;62(2):33. doi: 10.1167/iovs.62.2.33
  65. Rosen ED, Spiegelman BM. PPARgamma: a nuclear regulator of metabolism, differentiation, and cell growth. J Biol Chem. 2001;276(41):37731–37734. doi: 10.1074/jbc.R100034200
  66. Jeon S, Baek J, Lee WK. Gli1 expression in human epiretinal membranes. Invest Ophthalmol Vis Sci. 2017;58(1):651–659. doi: 10.1167/iovs.16-20409
  67. Safonova TN, Lutsevich EÉ, Kintukhina NP. Icrocirculatory changes in bulbar conjunctiva in various diseases. The Russian Annals of Ophthalmology. 2016;132(2):90–95. (In Russ.) doi: 10.17116/oftalma2016132290-95
  68. Wild S, Roglic G, Greene A, et al. Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care. 2004;27(5):1047–1053. doi: 10.2337/diacare.27.5.1047
  69. Butler AE, English E, Kilpatrick ES, et al. Diagnosing type 2 diabetes using Hemoglobin A1c: a systematic review and meta-analysis of the diagnostic cutpoint based on microvascular complications. Acta Diabetol. 2021;58(3):279–300. doi: 10.1007/s00592-020-01606-5
  70. Elalamy I, Chakroun T, Gerotziafas GT, et al. Circulating platelet-leukocyte aggregates: a marker of microvascular injury in diabetic patients. Thromb Res. 2008;121(6):843–848. doi: 10.1016/j.thromres.2007.07.016
  71. Mullugeta Y, Chawla R, Kebede T, Worku Y. Dyslipidemia associated with poor glycemic control in type 2 diabetes mellitus and the protective effect of metformin supplementation. Ind J Clin Biochem. 2012;27(4):363–369. doi: 10.1007/s12291-012-0225-8
  72. Femlak M, Gluba-Brzózka A, Ciałkowska-Rysz A, Rysz J. The role and function of HDL in patients with diabetes mellitus and the related cardiovascular risk. Lipids Health Dis. 2017;16(1):207. doi: 10.1186/s12944-017-0594-3
  73. Gundogan K, Bayram F, Capak M, et al. Prevalence of metabolic syndrome in the Mediterranean region of Turkey: evaluation of hypertension, diabetes mellitus, obesity, and dyslipidemia. Metab Syndr Relat Disord. 2009;7(5):427–434. doi: 10.1089/met.2008.0068
  74. Antwi-Baffour S, Kyeremeh R, Boateng SO, et al. Haematological parameters and lipid profile abnormalities among patients with type-2 diabetes mellitus in Ghana. Lipids Health Dis. 2018;17(1):283. doi: 0.1186/s12944-018-0926-y
  75. Chen L-K, Lin M-H, Chen Z - J, et al. Association of insulin resistance and hematologic parameters: study of a middle-aged and elderly Chinese population in Taiwan. Chin Med Assoc. 2006;69(6): 248–253. doi: 10.1016/S1726-4901(09)70251-5
  76. Lin K-Y, Hsih W-H, Lin Y-B, et al. Update in the epidemiology, risk factors, screening, and treatment of diabetic retinopathy. J Diabetes Investig. 2021;12(8):1322–1325. doi: 10.1111/jdi.13480
  77. Zhu W, Smith JW, Huang C-M. Mass spectrometry-based label-free quantitative proteomics. J Biomed Biotechnol. 2010;2010:840518. doi: 10.1155/2010/840518
  78. Butovich IA. Lipidomic analysis of human meibum using HPLC-MSn. Methods Mol Biol. 2009;579:221–246. doi: 10.1007/978-1-60761-322-0_11
  79. Butovich IA. Tear film lipids. Exp Eye Res. 2013;117:4–27. doi: 10.1016/j.exer.2013.05.010
  80. Aldana J, Romero-Otero A, Cala MP. Exploring the lipidome: Current lipid extraction techniques for mass spectrometry analysis. Metabolites. 2020;10(6):231. doi: 10.3390/metabo10060231
  81. Parfitt JJ, Woo S, Reid KM, et al. A new method of immunofluorescence computed tomography (ICT) for the localization and quantification of many antigens in large volumes of tissue with high resolution. PloS one. 2012;7:e53245.
  82. Chang AY, Purt B. Biochemistry, tear film. StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing, 2022.
  83. Butovich IA, Wojtowicz JC, Molai M. Human tear film and meibum. Very long chain wax esters and (O-acyl)-omega-hydroxy fatty acids of meibum. J Lipid Res. 2009;50(12):2471–2485. doi: 10.1194/jlr.M900252-JLR200
  84. Borchman D, Ramakrishnan V, Henry C, Ramasubramanian A. Differences in Meibum and tear lipid composition and conformation. Cornea. 2020;39(1):122–128. doi: 10.1097/ICO.0000000000002095

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies