Modern concept of neovascular glaucoma (review)

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

The aim of this study is analysis of current methods for diagnosis and treatment of neovascular glaucoma to assess their effectiveness, and based on these data, further development of a method of surgical treatment based on morphological factors involved in its progression. The review was performed using the domestic RSCI database and the international PubMed database, with the search keywords being “neovascular glaucoma”, “secondary glaucoma”, “ophthalmic hypertension”. An analysis of 39 literature sources was performed. The search depth was 13 years (2009–2022). Variants of neovascular glaucoma development of and of its diagnosis were considered, it was noted that it is necessary to pay attention to the study of minimally invasive methods for diagnosing the anterior segment using optical coherence tomography, which will help in the future to choose the right tactics for medical or surgical treatment. Particular attention is paid to the analysis of surgical treatment methods, which often turn out to be ineffective and require re-operations. It is necessary to develop a new method of surgical treatment of neovascular glaucoma, which provides the most sparing approach to surgical treatment, which will improve the anatomical and functional results and help reduce the number of intra- and postoperative complications and provide a longer period without re-operations.

Full Text

Restricted Access

About the authors

Rinat R. Fayzrakhmanov

Pirogov National Medical and Surgical Center; Institute for Advanced Training of Physicians, Pirogov National Medical and Surgical Center

Email: rinatrf@gmail.com
ORCID iD: 0000-0002-4341-3572
SPIN-code: 1620-0083

Dr. Sci. (Med.), Professor, Head of the Department of Ophthalmic Diseases

Russian Federation, Moscow; Moscow

Matvey E. Kalinin

Pirogov National Medical and Surgical Center; Institute for Advanced Training of Physicians, Pirogov National Medical and Surgical Center

Author for correspondence.
Email: matvey.kalinin@gmail.com
ORCID iD: 0000-0002-4365-3488
SPIN-code: 9524-7378

Ophthalmologist

Russian Federation, Moscow; Moscow

Oleg A. Pavlovsky

Pirogov National Medical and Surgical Center; Institute for Advanced Training of Physicians, Pirogov National Medical and Surgical Center

Email: olegpavlovsky@yandex.ru
ORCID iD: 0000-0003-3470-6282
SPIN-code: 6781-1504

MD, Cand. Sci. (Med.), Ophthalmologist

Russian Federation, Moscow; Moscow

Egor S. Chekhonin

Pirogov National Medical and Surgical Center

Email: dr.chekhonin@gmail.com
ORCID iD: 0000-0002-8901-1341
SPIN-code: 8127-4131

Ophthalmologist

Russian Federation, Moscow

Olga L. Sekhina

Institute for Advanced Training of Physicians, Pirogov National Medical and Surgical Center

Email: sekhina.ol@mail.ru
ORCID iD: 0000-0002-1499-1787
SPIN-code: 1618-3996

postgraduate student of the Department of Ophthalmology

Russian Federation, Moscow

References

  1. Saikumar SJ, Manju A, Abhilash N. Neovascular glaucoma. J Ophthalmol. 2018;30(3):172–177. doi: 10.4103/kjo.kjo_77_18
  2. Senthil S, Dada T, Das T, et al. Neovascular glaucoma — A review. Indian J Ophtalmol. 2021;69(3):525–534. doi: 10.4103/ijo.IJO_1591_20
  3. de Salles MC, Lindberg C, Epstein D. Neovascular glaucoma in patients with central retinal vein occlusion: A real-life study in the anti-VEGF era. Acta Ophthalmologica. 2020;99(1):e7–e12. doi: 10.1111/aos.14500
  4. Havens SJ, Gulati V. Neovascular glaucoma. Ed. by Nguen QD, Rodrigues EB, Mieler WF. Retinal Pharmacotherapeutics. Vol. 55. Karger Publishers, 2016. P. 196–204. doi: 10.1159/000431196
  5. Jung YH, Ahn SJ, Hong JH, et al. Incidence and clinical features of neovascularization of the iris following acute central retinal artery occlusion. Korean J Ophthalmol. 2016;30(5):352–359. doi: 10.3341/kjo.2016.30.5.352
  6. Rodrigues GB, Abe RY, Zangalli C, et al. Neovascular glaucoma: A review. Int J Retina Vitreous. 2016;2:26. doi: 10.1186/s40942-016-0051-x
  7. Kim M, Lee C, Payne R, et al. Angiogenesis in glaucoma filtration surgery and neovascular glaucoma: A review. Surv Ophthalmol. 2015;60(6):524–535. doi: 10.1016/j.survophthal.2015.04.003.
  8. Wand M. Cases in controversy: neovascular glaucoma. J Glaucoma. 1995;4(5):346–353. doi: 10.1097/00061198-199510000-00009
  9. Hirano T, Kakihara S, Toriyama Y, et al. Wide-field en face swept-source optical coherence tomography angiography using extended field imaging in diabetic retinopathy. Br J Ophthalmol. 2018;102(9):1199–1203. doi: 10.1136/bjophthalmol-2017-311358
  10. Sawada O, Ichiyama Y, Obata S, et al. Comparison between wide-angle OCT angiography and ultra-wide field fluorescein angiography for detecting non-perfusion areas and retinal neovascularization in eyes with diabetic retinopathy. Graefe’s Arch Clin Exp Ophthalmol. 2018;256(7):1275–1280. doi: 10.1007/s00417-018-3992-y
  11. Russell JF, Shi Y, Hinkle JW, et al. Longitudinal wide-field swept-source OCT angiography of neovascularization in proliferative diabetic retinopathy after panretinal photocoagulation. Ophthalmol Retina. 2019;3(4):350–361. doi: 10.1016/j.oret.2018.11.008
  12. Chalam KV, Brar VS, Murthy RK. Human ciliary epithelium as a source of synthesis and secretion of vascular endothelial growth factor in neovascular glaucoma. JAMA Ophthalmol. 2014;132(11): 1350–1354. doi: 10.1001/jamaophthalmol.2014.2356
  13. Oshida E, Arai K, Sakai M, Chikuda M. Study of free radicals in aqueous humor in glaucoma and cataracts: differences in presence or absence of diabetes mellitus and neovascular glaucoma. Nippon Ganka Gakkai Zasshi. 2014;118(9):759–767.
  14. Strzalkowski P, Strzalkowska A, Göbel W, et al. Combined vitrectomy, near-confluent panretinal endolaser, bevacizumab and cyclophotocoagulation for neovascular glaucoma — a retrospective interventional case series. F1000Res. 2020;9:1236. doi: 10.12688/f1000research.26879.2
  15. Andrés-Guerrero V, Perucho-González L, García-Feijoo J, et al. current perspectives on the use of anti-VEGF drugs as adjuvant therapy in glaucoma. Adv Ther. 2017;34(2):378–395. doi: 10.1007/s12325-016-0461-z
  16. Waisbourd M, Shemesh G, Kurtz S, et al. Topical bevacizumab for neovascular glaucoma: a pilot study. Pharmacology. 2014;93(3–4): 108–112. doi: 10.1159/000358600
  17. Grover S, Gupta S, Sharma R, et al. Intracameral bevacizumab effectively reduces aqueous vascular endothelial growth factor concentrations in neovascular glaucoma. Br J Ophthalmol. 2009;93(2):273–274. doi: 10.1136/bjo.2008.145714
  18. Lüke J, Nassar K, Lüke M, Grisanti S. Ranibizumab as adjuvant in the treatment of rubeosis iridis and neovascular glaucoma — results from a prospective interventional case series. Graefe’s Arch Clin Exp Ophthalmol. 2013;251(10):2403–2413. doi: 10.1007/s00417-013-2428-y
  19. Sugimoto Y, Mochizuki H, Okumichi H, et al. Effect of intravitreal bevacizumab on iris vessels in neovascular glaucoma patients. Graefe’s Arch Clin Exp Ophthalmol. 2010;248(11):1601–1609. doi: 10.1007/s00417-010-1406-x
  20. Karaman S, Leppänen V-M, Alitalo K. Vascular endothelial growth factor signaling in development and disease. Development. 2018;145(14): dev151019. doi: 10.1242/dev.151019
  21. Rodrigues EB, Farah ME, Maia M, et al. Therapeutic monoclonal antibodies in ophthalmology. Prog Retin Eye Res. 2009;28(2): 117–144. doi: 10.1016/j.preteyeres.2008.11.005
  22. Pardali E, ten Dijke P. Transforming growth factor-beta signaling and tumor angiogenesis. Front Biosci. 2009;14(13):4848–4861. doi: 10.2741/3573
  23. Nakamura Y, Takeda N, Mochizuki M. A case of vasoproliferative retinal tumor complicated by neovascular glaucoma. Retin Cases Brief Rep. 2013;7(4):338–342. doi: 10.1097/ICB.0b013e3182598eea
  24. Zhou Q, Liang J, Lu H. Intravitreal bevacizumab for ocular metastasis of multiple myeloma. Optom Vis Sci. 2013;90(9):e236–e240. doi: 10.1097/OPX.0b013e31829caaf7
  25. Tang M, Fu Y, Wang Y, et al. Efficacy of intravitreal ranibizumab combined with Ahmed glaucoma valve implantation for the treatment of neovascular glaucoma. BMC Ophthalmol. 2016;16:7. doi: 10.1186/s12886-016-0183-7
  26. Sahyoun M, Azar G, Khoueir Z, et al. Long-term results of Ahmed glaucoma valve in association with intravitreal bevacizumab in neovascular glaucoma. J Glaucoma. 2015;24(5):383–388. doi: 10.1097/IJG.0000000000000234
  27. Zhou M, Xu X, Zhang X, Sun X. Clinical outcomes of Ahmed glaucoma valve implantation with or without intravitreal bevacizumab pretreatment for neovascular glaucoma: a systematic review and meta-analysis. J Glaucoma. 2015;25(7):551–557. doi: 10.1097/IJG.0000000000000241
  28. Borrás T. growth factors, oxidative damage, and inflammation in exfoliation syndrome. J Glaucoma. 2018;27S1(S1):S54–S60. doi: 10.1097/IJG.0000000000000904
  29. Liu L, Xu Y, Huang Z, Wang X. Intravitreal ranibizumab injection combined trabeculectomy versus Ahmed valve surgery in the treatment of neovascular glaucoma: assessment of efficacy and complications. BMC Ophthalmol. 2016;16:65. doi: 10.1186/s12886-016-0248-7
  30. Olmos LC, Sayed MS, Moraczewski AL, et al. Long-term outcomes of neovascular glaucoma treated with and without intravitreal bevacizumab. Eye (Lond). 2016;30(3):463–472. doi: 10.1038/eye.2015.259
  31. Molteno AC. New implant for drainage in glaucoma. Animal trial. Br J Ophthalmol. 1969;53(3):161–168. doi: 10.1136/bjo.53.3.161
  32. Hong M, Peng Y, Lai Y, et al. Comparison of Aurolab aqueous drainage implant with Ahmed glaucoma valve for refractory glaucoma: a meta-analysis. Ophthalmic Res. 2023;66(1):445–452. doi: 10.1159/000529039
  33. Kang YK, Shin JP, Kim DW. Long-term surgical outcomes of Ahmed valve implantation in refractory glaucoma according to the type of glaucoma. BMC Ophthalmol. 2022;22(1):270. doi: 10.1186/s12886-022-02493-w
  34. Williams AL, Moster MR, Rahmatnejad K, et al. Clinical efficacy and safety profile of micropulse transscleral cyclophotocoagulation in refractory glaucoma. J Glaucoma. 2018;27(5):445–449. doi: 10.1097/IJG.0000000000000934
  35. Bar-David L, Blumenthal EZ. Evolution of glaucoma surgery in the last 25 years. Rambam Maimonides Med J. 2018;9(3):e0024. doi: 10.5041/RMMJ.10345
  36. Tseng VL, Coleman AL, Chang MY, Caprioli J. Aqueous shunts for glaucoma. Cochrane Database Syst Rev. 2017;7(7):CD004918. doi: 10.1136/bjo.2005.081224
  37. Hwang HB, Han JW, Yim HB, Lee NY. Beneficial effects of adjuvant intravitreal bevacizumab injection on outcomes of Ahmed glaucoma valve implantation in patients with neovascular glaucoma: systematic literature review. J Ocul Pharmacol Ther. 2015;31(4):198–203. doi: 10.1089/jop.2014.0108
  38. Kolko M, Heegaard S, Cvenkel B. Novel approaches to optimize treatment strategies in glaucoma. J Ophthalmol. 2021;2021:9876478. doi: 10.1155/2021/9876478
  39. Thompson AM, Bevin TH, Molteno ACB. Surgical technique 1 (Molteno glaucoma implant). Ed. by Shaarawy TM, Sherwood MB, Hitchings RA, Crowston JG. Glaucoma. 2nd edition. Vol. 2. Elsevier, 2015. P. 1051–1063. doi: 10.1016/B978-0-7020-5193-7.00111-4
  40. Riva I, Roberti G, Oddone F, et al. Ahmed glaucoma valve implant: surgical technique and complications. Clin Ophthalmol. 2017;11: 357–367. doi: 10.2147/OPTH.S104220
  41. Kawabata K, Shobayashi K, Iwao K, et al. Efficacy and safety of Ex-PRESS® mini shunt surgery versus trabeculectomy for neovascular glaucoma: a retrospective comparative study. BMC Ophthalmol. 2019;19(1):75. doi: 10.1186/s12886-019-1083-4

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector

License URL: https://eco-vector.com/for_authors.php#07

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies