Silicone oil droplets in the vitreous after intravitreal injections: review of literature with clinical examples

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Currently, intravitreal injections are firmly in the lead as a drug delivery method for treatment of a wide range of eye diseases. With the accumulation of clinical material, knowledge about the complications and side effects of this technique is expanding. One of the undesirable phenomena that has been actively studied recently is the ingress of silicone oil droplets from single-use syringes and needles used to perform the procedure into the vitreous cavity of patients’ eyes. The analysis of the results of original studies on this issue is carried out, and the currently available practical recommendations aimed at reducing the risk of this complication are presented. The article is illustrated with original clinical examples. It can be concluded that the penetration of silicone oil into the eye cavity during intravitreal injections is an urgent problem of modern ophthalmology that requires further investigation and solution.

Full Text

Restricted Access

About the authors

Evgeniy V. Bobykin

Ural State Medical University

Author for correspondence.
Email: oculist.ev@gmail.com
ORCID iD: 0000-0001-5752-8883
SPIN-code: 2705-1425
Scopus Author ID: 26430475300

MD, PhD, cand. Sci. (Med.), associate professor

Russian Federation, 3 Repin str., Yekaterinburg, 620028

References

  1. Bobykin EV. Treatment of macular diseases: a look into the future (literature review). Otrazhenie. 2020;1–2(10):59–70. (In Russ.) doi: 10.25276/2686-6986-2020-1-61-72
  2. Kahawita S, Simon S, Gilhotra J. Flashes and floaters – a practical approach to assessment and management. Aust Fam Physician. 2014;43(4):201–203.
  3. Dawood S, Skondra D. Monocular floaters and flashes. Dis Mon. 2017;63(3):80–87. doi: 10.1016/j.disamonth.2016.10.005
  4. Nicolai M, Lassandro N, Franceschi A, et al. Intraocular Pressure Rise Linked to Silicone Oil in Retinal Surgery: A Review. Vision (Basel). 2020;4(3):36. doi: 10.3390/vision4030036
  5. Suzuki M, Okada T, Takeuchi S, et al. Effect of silicone oil on ocular tissues. Jpn J Ophthalmol. 1991;35(3):282–291.
  6. Freund KB, Laud K, Eandi CM, et al. Silicone Oil Droplets Following Intravitreal Injection. Retina. 2006;26(6):701–703. doi: 10.1097/01.iae.0000223177.08438.2b
  7. Bakri SJ, Ekdawi NS. Intravitreal silicone oil droplets after intravitreal drug injections. Retina. 2008;28(7):996–1001. doi: 10.1097/IAE.0b013e31816c6868
  8. Spaide RF, Chung JE, Fisher YL. Ultrasound detection of silicone oil after its removal in retinal reattachment surgery. Retina. 2005;25(7):943–945. doi: 10.1097/00006982-200510000-00022
  9. Kocabora MS, Ozbilen KT, Serefoglu K. Intravitreal silicone oil droplets following pegaptanib injection. Acta Ophthalmol. 2010;88(2): e44–45. doi: 10.1111/j.1755-3768.2008.01336.x
  10. Goldberg RA, Shah CP, Wiegand TW, et al. Noninfectious inflammation after intravitreal injection of aflibercept: clinical characteristics and visual outcomes. Am J Ophthalmol. 2014;158(4):733–737.e1. doi: 10.1016/j.ajo.2014.06.019
  11. Stone TW. ed. ASRS2018 Preferences and Trends Membership Survey. Chicago, IL. American Society of Retina Specialists; 2018. Available at: https://www.asrs.org/content/documents/_2018-pat-survey-results-for-website.pdf. Accessed: 08.06.2021.
  12. Khurana RN, Chang LK, Porco TC. Incidence of Presumed Silicone Oil Droplets in the Vitreous Cavity after Intravitreal Bevacizumab Injection with Insulin Syringes. JAMA Ophthalmol. 2017;135(7):800–803. doi: 10.1001/jamaophthalmol.2017.1815
  13. Melo GB, Dias Junior CS, Morais FB, et al. Prevalence of silicone oil droplets in eyes treated with intravitreal injection. Int J Retina Vitreous. 2019;5:34. doi: 10.1186/s40942-019-0184-9
  14. Schargus M, Frings A. Issues with Intravitreal Administration of Anti-VEGF Drugs. Clin Ophthalmol. 2020;14:897–904. doi: 10.2147/OPTH.S207978
  15. Singh RP. 2018 Global Trends in Retina Survey. Available at: https://www.asrs.org/content/documents/2018-global-trends-in-retina-survey-highlights-website.pdf. Accessed: 08.06.2021.
  16. Melo GB, Cruz NFSD, Emerson GG, et al. Critical analysis of techniques and materials used in devices, syringes, and needles used for intravitreal injections. Prog Retin Eye Res. 2020;80:100862. doi: 10.1016/j.preteyeres.2020.100862
  17. Liu L, Ammar DA, Ross LA, et al. Silicone oil microdroplets and protein aggregates in repackaged bevacizumab and ranibizumab: effects of long-term storage and product mishandling. Invest Ophthalmol Vis Sci. 2011;52(2):1023–1034. doi: 10.1167/iovs.10-6431
  18. Krayukhina E, Tsumoto K, Uchiyama S, et al. Effects of syringe material and silicone oil lubrication on the stability of pharmaceutical proteins. J Pharm Sci. 2015;104(2):527–535. doi: 10.1002/jps.24184
  19. Teska BM, Brake JM, Tronto GS, et al. Aggregation and particle formation of therapeutic proteins in contact with a novel fluoropolymer surface versus siliconized surfaces: effects of agitation in vials and in prefilled syringes. J Pharm Sci. 2016;105(7):2053–2065. doi: 10.1016/j.xphs.2016.04.015
  20. Melo GB, Dias Junior CD, Carvalho MR, et al. Release of silicone oil droplets from syringes. Int J Retin Vitr. 2019;5:1. doi: 10.1186/s40942-018-0153-8
  21. Freire E, Schön A, Hutchins BM, et al. Chemical denaturation as a tool in the formulation optimization of biologics. Drug Discov Today. 2013;18(19–20):1007–1013. doi: 10.1016/j.drudis.2013.06.005
  22. Chisholm CF, Baker AE, Soucie KR, et al. Silicone oil microdroplets can induce antibody responses against recombinant murine growth hormone in mice. J Pharm Sci. 2016;105(5):1623–1632. doi: 10.1016/j.xphs.2016.02.019
  23. Gerhardt A, Mcgraw NR, Schwartz DK, et al. Protein aggregation and particle formation in prefilled glass syringes. J Pharm Sci. 2014;103(6):1601–1612. doi: 10.1002/jps.23973
  24. Kiminami H, Krueger AB, Abe Y, et al. Impact of sterilization method on protein aggregation and particle formation in polymer-based syringes. J Pharm Sci. 2017:106(4):1001–1007. doi: 10.1016/j.xphs.2016.12.007
  25. Chisholm CF, Nguyen BH, Soucie KR, et al. In vivo analysis of the potency of silicone oil microdroplets as immunological adjuvants in protein formulations. J Pharm Sci. 2015;104(11):3681–3690. doi: 10.1002/jps.24573
  26. Krayukhina E, Yokoyama M, Hayashihara KK, et al. An assessment of the ability of submicron- and micron-size silicone oil droplets in dropped pre-fillable syringes to invoke early- and late-stage immune responses. J Pharm Sci. 2019:108(7):2278–2287. doi: 10.1016/j.xphs.2019.02.002
  27. Melo GB, Figueira ACM, Batista FAH, et al. Inflammatory reaction after aflibercept intravitreal injections associated with silicone oil droplets released from syringes: a case-control study. Ophthalmic Surg Lasers Imaging Retina. 2019;50(5):288–294. doi: 10.3928/23258160-20190503-05
  28. Astakhov YS, Belekhova SG, Litvinova EA. Infectious and sterile endophthalmitis after intravitreal injections: differential diagnosis, prevention, treatment. Ophthalmology Journal. 2017;10(1):62–69. (In Russ.) doi: 10.17816/OV10162-69
  29. Williams PD, Chong D, Fuller T, et al. Noninfectious vitritis after intravitreal injection of anti-VEGF agents. Variations in rates and presentation by medication. Retina. 2016;36(5):909–913. doi: 10.1097/IAE.0000000000000801
  30. Greenberg JP, Belin P, Butler J, et al. Aflibercept-related sterile intraocular inflammation outcomes. Ophthalmol Retina. 2019;3(9):753–759. DOI: 10.1016/j. oret.2019.04.006
  31. Grzybowski A, Told R, Sacu S, et al. 2018 Update on Intravitreal Injections: Euretina Expert Consensus Recommendations. Ophthalmologica. 2018;239(4):181–193. doi: 10.1159/000486145
  32. Aiello LP, Brucker AJ, Chang S, et al. Evolving guidelines for intravitreous injections. Retina. 2004;24(5 Suppl): S3–19. doi: 10.1097/00006982-200410001-00002
  33. Xu Y, You Y, Du W, et al. Ocular pharmacokinetics of bevacizumab in vitrectomized eyes with silicone oil tamponade. Invest Ophthalmol Vis Sci. 2012;53(9):5221–5226. doi: 10.1167/iovs.12-9702
  34. Scott IU, Oden NL, VanVeldhuisen PC, et al. SCORE Study Report 7: incidence of intravitreal silicone oil droplets associated with staked-on vs luer cone syringe design. Am J Ophthalmol. 2009;148(5):725–732.e7. doi: 10.1016/j.ajo.2009.06.004
  35. Emerson GG. Silicone Oil Droplets are More Common in Fluid From BD Insulin Syringes as Compared to Other Syringes. Journal of VitreoRetinal Diseases. 2017;1(6):401–406. doi: 10.1177/2474126417735963
  36. Neroev VV, Astakhov YuS, Korotkih SA, et al. Protocol of intravitreal drug delivery. Consensus of the Expert Counsil of Retina and Optic Nerve Diseases of the All-Russian Public Organasation “Association of Ophthalmologists”. The Russian Annals of Ophthalmology. 2020;136(6):251–263. (In Russ.) doi: 10.17116/oftalma2020136062251
  37. Sampat KM, Wolfe JD, Shah MK, et al. Accuracy and reproducibility of seven brands of small-volume syringes used for intraocular drug delivery. Ophthalmic Surg Lasers Imaging Retina. 2013;44(4):385–389. doi: 10.3928/23258160-20130601-02
  38. Moisseiev E, Rudell J, Tieu EV, et al. Effect of Syringe Design on the Accuracy and Precision of Intravitreal Injections of Anti-VEGF Agents. Curr Eye Res. 2017;42(7):1059–1063. doi: 10.1080/02713683.2016.1276195
  39. Loewenstein I, Goldstein M, Moisseiev J, Moisseiev E. Accuracy and Precision of Intravitreal Injections of Anti-VEGF Agents in Real Life: What Is Actually in the Syringe? Retina. 2019;39(7):1385–1391. doi: 10.1097/IAE.0000000000002170
  40. Souied E, Nghiem-Buffet S, Leteneux C, et al. Ranibizumab prefilled syringes: benefits of reduced syringe preparation times and less complex preparation procedures. Eur J Ophthalmol. 2015;25(6):529–534. doi: 10.5301/ejo.5000629
  41. Subhi Y, Kjer B, Munch IC. Prefilled syringes for intravitreal injection reduce preparation time. Dan Med J. 2016;63(4): A5214.
  42. Lode HE, Gjølberg TT, Foss S. et al. A new method for pharmaceutical compounding and storage of anti-VEGF biologics for intravitreal use in silicone oil-free prefilled plastic syringes. Sci Rep. 2019;9(1):18021. doi: 10.1038/s41598-019-54226-7
  43. ml Low Dead Space Syringe Luer Slip. Available at: https://www.precisemedical.com.au/products/tsk-1ml-low-dead-space-syringe-luer-slip Accessed: 08.06.21.
  44. Thompson JT. Prospective Study of Silicone Oil Microdroplets in Eyes Receiving Intravitreal Anti-Vascular Endothelial Growth Factor Therapy in 3 Different Syringes. Ophthalmol Retina. 2021:5(3): 234–240. doi: 10.1016/j.oret.2020.07.021
  45. Werner BP, Schöneich C, Winter G. Silicone Oil-Free Polymer Syringes for the Storage of Therapeutic Proteins. J Pharm Sci. 2019;108(3):1148–1160. doi: 10.1016/j.xphs.2018.10.049

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Schematic representation of a single-use syringe. 1 – zero graduation line; 2 – graduation lines; 3 – line of graduation of the nominal capacity; 4 – line of full graduated capacity; 5 – reference line; 6 – finger flange; 7 – adaptor cap; 8 – adaptor hole; 9 – syringe adaptor; 10 – barrel; 11 – piston; 12 – plunger seal; 13 – plunger; 14 – plunger top. This figure is an illustration of the elements of the assembled syringe. The plunger can be one piece or consist of separate parts, and can also have more than one seal

Download (42KB)
3. Fig. 2. Droplets of silicone oil (shown by red arrows) in the vitreous of patient N.: a, c – biomicroscopy; b – two-dimensional ultrasound scanning

Download (195KB)
4. Fig. 3. Inclusions in the vitreous of patient Sh.: a, c, е – two-dimensional ultrasound scanning; b, d, f – biomicroscopy

Download (110KB)
5. Fig. 4. Different models of single-use syringes: a – U-100 Insulin Syringe, SFM Hospital Products GmbH, volume 1.0 ml, integrated needle 29 G × 12.7 mm; b – syringe with a Luer cone 1.0 ml with a 30 G × 12.7 mm needle; c – silicone oil – free syringe Norm-Ject, Henke-Sass Wolf, 1.0 ml; d – comparison of the volume of “dead space” (highlighted in red) when using different models of syringes and needles [43]

Download (215KB)

Copyright (c) 2021 Bobykin E.V.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies