Comparative analysis of the anterior chamber changes after intravitreal injections of aflibercept and brolucizumab

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

BACKGROUND: Currently, the information is insufficient about the effect of multiple intravitreal injections (IVI) of brolucizumab in comparison with aflibercept on the parameters of iridolenticular diaphragm.

AIM: The aim of this study is using optical coherence tomography of the anterior segment (AS-OCT) to evaluate changes in the parameters of the anterior chamber in patients with multiple intravitreal injections of aflibercept and brolucizumab in the treatment of the neovascular form of age-related macular degeneration (nAMD).

MATERIALS AND METHODS: In total, 60 patients (60 eyes) were included into the study. The follow-up period duration was 12 months. Patients were divided into 2 groups: group 1 — 30 patients receiving intravitreal injections of aflibercept, group 2 — 30 patients receiving intravitreal injections of brolucizumab. Using a Revo NX tomograph, AS-OCT was performed, the depth of the anterior chamber and the dimensions of the anterior chamber angle were examined. The measurement was performed before intravitreal injections, one month after the first, one month after the third intravitreal injections, and one year after treatment.

RESULTS: In both groups, a shift of the iridolenticular diaphragm was noted according to AS-OCT data — a significant decrease in depth of the anterior chamber, anterior chamber angle parameters before treatment and after 4 months of treatment, as well as after a year of treatment. In group 1, in contrast to group 2, a greater number of intravitreal injections led to a greater decrease in the depth of the anterior chamber (rxy = 0.415, p = 0.02) and to a greater narrowing of the anterior chamber angle on the nasal and temporal sides (rxy = 0.37, p = 0.049 and rxy = 0.424, p = 0.02, respectively).

CONCLUSIONS: For the first time, changes of the anterior chamber of the eye were determined against the background of multiple intravitreal injections of aflibercept and brolucizumab in the treatment of the neovascular form of age-related macular degeneration using AS-OCT.

Full Text

Restricted Access

About the authors

Yulia S. Andreeva

M.M. Krasnov Scientific Research Institute of Eye Diseases

Author for correspondence.
Email: Juliu95@mail.ru
ORCID iD: 0000-0001-8319-926X
SPIN-code: 5640-6954

ophthalmologist

Russian Federation, 11, A, B, Rossolimo st., Moscow, 119021

Laeth Alkharki

M.M. Krasnov Scientific Research Institute of Eye Diseases

Email: alharki@bk.ru
ORCID iD: 0000-0001-6791-4219
SPIN-code: 6489-3529

Cand. Sci. (Medicine)

Russian Federation, 11, A, B, Rossolimo st., Moscow, 119021

Maria V. Budzinskaya

M.M. Krasnov Scientific Research Institute of Eye Diseases

Email: m_budzinskaya@mail.ru
ORCID iD: 0000-0002-5507-8775
SPIN-code: 3552-7061

MD, Dr. Sci. (Medicine)

Russian Federation, 11, A, B, Rossolimo st., Moscow, 119021

References

  1. Wong WL, Su X, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. Lancet Glob Health. 2014;2(2):106–116. doi: 10.1016/S2214-109X(13)70145-1
  2. Wykoff CC, Ou WC, Brown DM, et al. Randomized trial of treat-and-extend versus monthly dosing for neovascular age-related macular degeneration: 2-year results of the TREX-AMD study. Ophthalmol Retina. 2017;1(4):314–321. doi: 10.1016/j.oret.2016.12.004
  3. Cook HL, Patel PJ, Tufail A. Age-related macular degeneration: diagnosis and management. Br Med Bull. 2008;85(1):127–149. doi: 10.1093/bmb/ldn012
  4. Mantel I. Optimizing the anti-VEGF treatment strategy for neovascular age-related macular degeneration: from clinical trials to real-life requirements. Transl Vis Sci Technol. 2015;4(3):6. doi: 10.1167/tvst.4.3.6
  5. Fayzrakhmanov RR. Anti-VEGF therapy of neovascular age-related macular degeneration: from randomized trials to routine clinical practice. Russian Ophthalmological Journal. 2019;12(2):97–105. EDN: ZJQGTF doi: 10.21516/2072-0076-2019-12-2-97-105
  6. Budzinskaya MV, Plyukhova AA, Afanasyeva MA, Gorkavenko FV. New criteria of effectiveness of anti-VEGF therapy in exudative age-related macular degeneration. The Russian Annals of Ophthalmology. 2022;138(4):5866. EDN: FAGKLI doi: 10.17116/oftalma202213804158
  7. Tadayoni R, Sararols L, Weissgerber G, et al. Brolucizumab: a newly developed anti-VEGF molecule for the treatment of neovascular age-related macular degeneration. Ophthalmologica. 2021;244(2):93–101. doi: 10.1159/000513048
  8. Kulikov AN, Maltsev DS, Malafeeva AYu, et al. The first experience with brolucizumab for neovascular age-related macular degeneration. Russian Journal of Clinical Ophthalmology. 2022;22(2):108–115. EDN: GLDDRR doi: 10.32364/2311-7729-2022-22-2-108-115
  9. Budzinskaya MV, Plyukhova AA, Alkharki L. Modern trends in anti-VEGF therapy for age-related macular degeneration. The Russian Annals of Ophthalmology. 2023;139(3–2):46–50. EDN: PWSNYN doi: 10.17116/oftalma202313903246
  10. Dugel PU, Koh A, Ogura Y, et al. HAWK and HARRIER: phase 3, multicenter, randomized, double-masked trials of brolucizumab for neovascular age-related macular degeneration. Ophthalmology. 2020;127(1):72–84. doi: 10.1016/j.ophtha.2019.04.017
  11. Singh RS, Kim JE. Ocular hypertension following intravitreal anti-vascular endothelial growth factor agents. Drugs Aging. 2012;29:949–956. doi: 10.1007/s40266-012-0031-2
  12. El Chehab H, Le Corre A, Agard E, et al. Effect of topical pressure-lowering medication on prevention of intraocular pressure spikes after intravitreal injection. Eur J Ophthalmol. 2013;23(3):277–283. doi: 10.5301/ejo.5000159
  13. Loskutov IA, Melnikova LP, Kalugina ON. Intraocular pressure after intravitreal injections of VEGF inhibitors. National Journal glaucoma. 2017;16(1):38–45. EDN: YHDHVH
  14. Bauer SM, Voronkova EB, Kotliar KE. On elevation of intraocular pressure after intravitreal injections. Russian Ophthalmological Journal. 2021;14(4):126–129. EDN: SPSFSZ doi: 10.21516/2072-0076-2021-14-4-126-129
  15. Kerimoglu H, Ozturk BT, Bozkurt B, et al. Does lens status affect the course of early intraocular pressure and anterior chamber changes after intravitreal injection? Acta Ophthalmol. 2011;89(2):138–142. doi: 10.1111/j.1755-3768.2009.01656.x
  16. Wen J, Cousins S, Schuman S, Allingham R. Dynamic changes of the anterior chamber angle produced by intravitreal anti-vascular growth factor injections. Retina. 2016;36(10):1874–1881. doi: 10.1097/IAE.0000000000001018
  17. Liu L, Ammar DA, Ross LA, et al. Silicone oil microdroplets and protein aggregates in repackaged bevacizumab and ranibizumab: effects of long-term storage and product mishandling. Investig Ophthalmol Vis Sci. 2011;52(2):1023–1034. doi: 10.1167/iovs.10-6431
  18. Kim JE, Mantravadi AV, Hur EY, Covert DJ. Short-term intraocular pressure changes immediately after intravitreal injections of anti-vascular endothelial growth factor agents. Am J Ophthalmol. 2008;146(6):930–934. doi: 10.1016/j.ajo.2008.07.007
  19. Atchison EA, Wood KM, Mattox CG, et al. The real-world effect of intravitreous anti-vascular endothelial growth factor drugs on intraocular pressure: an analysis using the IRIS registry. Ophthalmology. 2018;125(5):676–682. doi: 10.1016/j.ophtha.2017.11.027
  20. Rusu IM, Deobhakta A, Yoon D, et al. Intraocular pressure in patients with neovascular age-related macular degeneration switched to aflibercept injection after previous anti-vascular endothelial growth factor treatments. Retina. 2014;34(11):2161–2166. doi: 10.1097/IAE.0000000000000264
  21. Tripathi RC, Borisuth NSC, Tripathi B.J. Mapping of Fc gamma receptors in the human and porcine eye. Exp Eye Res. 1991;53(5): 647–656. doi: 10.1016/0014-4835(91)90225-4
  22. Kahook MY, Ammar DA. In vitro effects of antivascular endothelial growth factors on cultured human trabecular meshwork cells. J Glaucoma. 2010;19(7):437–441. doi: 10.1097/IJG.0b013e3181ca74de
  23. Hepokur M, Ersoy E, Kısakürek B, et al. Optical coherence tomography and scheimpflug imaging of the iridocorneal angle following intravitreal injection of different medications: A longitudinal analysis. Photodiagnosis and Photodyn Ther. 2023;41:103319. doi: 10.1016/j.pdpdt.2023.103319
  24. Guler M, Capkin M, Simsek A, et al. Short-term effects of intravitreal bevacizumab on cornea and anterior chamber. Curr Eye Res. 2014;39(10):989–993. doi: 10.3109/02713683.2014.888452
  25. O’Bryhim BE, Lin JB, Piggott KD, et al. Anterior chamber angles after intravitreal injections for macular degeneration. Ophthalmol Retina. 2020;4(7):750–751. doi: 10.1016/j.oret.2020.02.007

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2024 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies