Laser speckle flowgraphy in ophthalmology

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Laser speckle flowgraphy is a noninvasive method for quantifying perfusion of the retina, choroid, and optic disc. The method is based on the laser speckle phenomenon, which is the speckle pattern visible when vessels are illuminated with an 830 nm diode laser. LSFG Analyzer analyzes the obtained speckle patterns to provide quantitative data on intraocular blood flow. A patient should be physically and emotionally stable and should not eat or drink any stimulating beverages a few hours before the examination. The analysis provides multiple pulse waveform parameters such as blowout score, blowout time skew, acceleration time index, rising rate, falling rate, flow acceleration index, resistivity index, relative flow volume. Laser speckle flowgraphy provides new opportunities for pathogenesis research, diagnosis, and evaluation of the treatment effectiveness for age-related macular degeneration, central serous chorioretinopathy, retinal vein occlusion, diabetic retinopathy, ischemic optic neuropathy, optic neuritis, and other diseases of the retina, choroid, and optic disc. In addition, laser speckle flowgraphy is used to assess the effect of physical activity, pregnancy, systemic diseases, and medications on ocular hemodynamics.

Full Text

Restricted Access

About the authors

Ruslan S. Zhazybaev

S. Fyodorov Eye Microsurgery Federal State Institution, the Khabarovsk branch

Author for correspondence.
Email: dvk@khvmntk.ru
ORCID iD: 0000-0002-6201-5051
SPIN-code: 9194-4972

MD

Russian Federation, Khabarovsk

Oleg V. Kolenko

S. Fyodorov Eye Microsurgery Federal State Institution, the Khabarovsk branch; Postgraduate Institute for Public Health Workers; Far-Eastern State Medical University

Email: dvk@khvmntk.ru
ORCID iD: 0000-0001-7501-5571
SPIN-code: 5775-5480

MD, Dr. Sci. (Medicine)

Russian Federation, Khabarovsk; Khabarovsk; Khabarovsk

Evgenii L. Sorokin

S. Fyodorov Eye Microsurgery Federal State Institution, the Khabarovsk branch; Far-Eastern State Medical University

Email: dvk@khvmntk.ru
ORCID iD: 0000-0002-2028-1140
SPIN-code: 4516-1429

MD, Dr. Sci. (Medicine), Professor

Russian Federation, Khabarovsk; Khabarovsk

References

  1. Vit VV. The structure of the human visual system: textbook. 3rd ed. Odessa: Astroprint, 2018. 664 p. (In Russ.)
  2. Pemp B, Schmetterer L. Ocular blood flow in diabetes and age-related macular degeneration. Can J Ophthalmol. 2008;43(3):295–301. doi: 10.3129/i08-049
  3. Cherecheanu AP, Garhofer G, Schmidl D, et al. Ocular perfusion pressure and ocular blood flow in glaucoma. Curr Opin Pharmacol. 2013;13(1):36–42. doi: 10.1016/j.coph.2012.09.003
  4. Doblhoff-Dier V, Schmetterer L, Vilser W, et al. Measurement of the total retinal blood flow using dual beam Fourier-domain Doppler optical coherence tomography with orthogonal detection planes. Biomed Opt Express. 2014;5(2):630–642. doi: 10.1364/BOE.5.000630
  5. Kiseleva TN, Petrov SYu, Okhotsimskaya TD, Markelova OI. State-of-the-art methods of qualitative and quantitative assessment of eye microcirculation. Russian Ophthalmological Journal. 2023;16(3):152–158. doi: 10.21516/2072-0076-2023-16-3-152-158 EDN: ORBVWL
  6. Fercher AF, Briers JD. Flow visualization by means of single-exposure speckle photography. Opt Commun. 1981;37(5):326–330. doi: 10.1016/0030-4018(81)90428-4
  7. Tamaki Y, Araie M, Kawamoto E, et al. Non-contact, two-dimensional measurement of tissue circulation in choroid and optic nerve head using laser speckle phenomenon. Exp Eye Res. 1995;60(4):373–383. doi: 10.1016/s0014-4835(05)80094-6
  8. Tamaki Y, Araie M, Tomita K, et al. Real-time measurement of human optic nerve head and choroid circulation, using the laser speckle phenomenon. Jpn J Ophthalmol. 1997;41(1):49–54. doi: 10.1016/s0021-5155(96)00008-1
  9. Sugiyama T. Basic technology and clinical applications of the updated model of laser speckle flowgraphy to ocular diseases. Photonics. 2014;1(3):220–234. doi: 10.3390/photonics1030220
  10. Konishi N, Tokimoto Y, Kohra K, Hitoshi F. New laser speckle flowgraphy system using CCD camera. Opt Rev. 2002;9:163–169. doi: 10.1007/s10043-002-0163-4
  11. Luft N, Wozniak PA, Aschinger GC, et al. Ocular blood flow measurements in healthy white subjects using laser speckle flowgraphy. PLoS One. 2016;11(12):e0168190. doi: 10.1371/journal.pone.0168190
  12. Kida T, Oku H, Sugiyama T, Ikeda T. The mechanism and change in the optic nerve head (ONH) circulation in rabbits after glucose loading. Curr Eye Res. 2001;22(2):95–101. doi: 10.1076/ceyr.22.2.95.5523
  13. Kida T, Sugiyama T, Oku H, et al. Plasma endothelin-1 levels depress optic nerve head circulation detected during the glucose tolerance test. Graefes Arch Clin Exp Ophthalmol. 2007;245(9):1289–1293. doi: 10.1007/s00417-006-0525-x
  14. Okuno T, Sugiyama T, Kohyama M, et al. Ocular blood flow changes after dynamic exercise in humans. Eye (Lond). 2006;20(7):796–800. doi: 10.1038/sj.eye.6702004
  15. Sugiyama K, Bacon DR, Cioffi GA, et al. The effect of phenylephrine on the ciliary body and optic nerve head microvasculature in rabbits. J Glaucoma. 1992;1(3):156–164. doi: 10.1097/00061198-199201030-00005
  16. Takayama J, Mayama C, Mishima A, et al. Topical phenylephrine decreases blood velocity in the optic nerve head and increases resistive index in the retinal arteries. Eye (Lond). 2009;23(4):827–34. doi: 10.1038/eye.2008.142
  17. Kuroda Y, Uji A, Yoshimura N. Factors associated with optic nerve head blood flow and color tone: a retrospective observational study. Graefes Arch Clin Exp Ophthalmol. 2016;254(5):963–970. doi: 10.1007/s00417-015-3247-0
  18. Hirooka K, Saito W, Hashimoto Y, et al. Increased macular choroidal blood flow velocity and decreased choroidal thickness with regression of punctate inner choroidopathy. BMC Ophthalmol. 2014;28(14):73. doi: 10.1186/1471-2415-14-73
  19. Rina M, Shiba T, Takahashi M, et al. Pulse waveform analysis of optic nerve head circulation for predicting carotid atherosclerotic changes. Graefes Arch Clin Exp Ophthalmol. 2015;253:2285–2291. doi: 10.1007/s00417-015-3123-y
  20. Shiba T, Takahashi M, Shiba C, et al. The relationships between the pulsatile flow form of ocular microcirculation by laser speckle flowgraphy and the left ventricular end-diastolic pressure and mass. Int J Cardiovasc Imag. 2018;34:1715–1723. doi: 10.1007/s10554-018-1388-z
  21. Enomoto N, Anraku A, Tomita G, et al. Characterization of laser speckle flowgraphy pulse waveform parameters for the evaluation of the optic nerve head and retinal circulation. Sci Rep. 2021;11(1):6847. doi: 10.1038/s41598-021-86280-5
  22. Shiba T, Takahashi M, Hori Y, et al. Optic nerve head circulation determined by pulse wave analysis is significantly correlated with cardio ankle vascular index, left ventricular diastolic function, and age. J Atheroscler Thromb. 2012;19(11):999–1005. doi: 10.5551/jat.13631
  23. Shiba T, Takahashi M, Matsumoto T, et al. Arterial stiffness shown by the cardio-ankle vascular index is an important contributor to optic nerve head microcirculation. Graefes Arch Clin Exp Ophthalmol. 2017;255:99–105. doi: 10.1007/s00417-016-3521-9
  24. Shiba T, Takahashi M, Hashimoto R, et al. Pulse waveform analysis in the optic nerve head circulation reflects systemic vascular resistance obtained via a Swan–Ganz catheter. Graefes Arch Clin Exp Ophthalmol. 2016;254:1195–1200. doi: 10.1007/s00417-016-3289-y
  25. Mursch-Edlmayr AS, Luft N, Podkowinski D, et al. Laser speckle flowgraphy derived characteristics of optic nerve head perfusion in normal tension glaucoma and healthy individuals: a pilot study. Sci Rep. 2018;8:5343. doi: 10.1038/s41598-018-23149-0
  26. Petrov SYu, Okhotsimskaya TD, Markelova OI. Assessment of ocular blood flow age- related changes using laser speckle flowgraphy. Point of view. East – West. 2022;(1):23–26. doi: 10.25276/2410-1257-2022-1-23-26 EDN: IKLICH
  27. Neroeva NV, Zaytseva OV, Okhotsimskaya TD, et al. Age-related changes of ocular blood flow detecting by laser speckle flowgraphy. Russian Ophthalmological Journal. 2023;16(2):54–62. doi: 10.21516/2072-0076-2023-16-2-54-62 EDN: FFSEQV
  28. Aizawa N, Kunikata H, Nitta F, et al. Age- and sex-dependency of laser speckle flowgraphy measurements of optic nerve vessel microcirculation. PLoS One. 2016;11(2):e0148812. doi: 10.1371/journal.pone.0148812
  29. Kuroda F, Iwase T, Yamamoto K, et al. Correlation between blood flow on optic nerve head and structural and functional changes in eyes with glaucoma. Sci Rep. 2020;10(1):729. doi: 10.1038/s41598-020-57583-w
  30. Gu C, Li A, Yu L. Diagnostic performance of laser speckle flowgraphy in glaucoma: a systematic review and meta-analysis. Int Ophthalmol. 2021;41:3877–3888. doi: 10.1007/s10792-021-01954-3
  31. Mursch-Edlmayr AS, Luft N, Podkowinski D, et al. Effects of three intravitreal injections of aflibercept on the ocular circulation in eyes with age-related maculopathy. Br J Ophthalmol. 2020;104(1):53–57. doi: 10.1136/bjophthalmol-2019-313919
  32. Calzetti G, Mora P, Borrelli E, et al. Short-term changes in retinal and choroidal relative flow volume after anti-VEGF treatment for neovascular age-related macular degeneration. Sci Rep. 2021;11(1):23723. doi: 10.1038/s41598-021-03179-x
  33. Maekubo T, Chuman H, Nao-i N. Laser speckle flowgraphy for differentiating between nonarteritic ischemic optic neuropathy and anterior optic neuritis. Jpn J Ophthalmol. 2013;57(4):385–390. doi: 10.1007/s10384-013-0246-8
  34. Wågström J, Malmqvist L, Hamann S. Optic nerve head blood flow analysis in patients with optic disc drusen using laser speckle flowgraphy. Neuro-Ophthalmology. 2020;45(2):92–98. doi: 10.1080/01658107.2020.1795689
  35. Tomita R, Iwase T, Fukami M, et al. Elevated retinal artery vascular resistance determined by novel visualized technique of laser speckle flowgraphy in branch retinal vein occlusion. Sci Rep. 2021;11(1):20034. doi: 10.1038/s41598-021-99572-7
  36. Fil AA, Sorokin EL, Kolenko OV. Experience in using the capabilities of laser speckle flowgraphy in macular edema associated with retinal vein occlusions (preliminary report). Modern technologies in ophthalmology. 2022;(3):264–269. doi: 10.25276/2312-4911-2022-3-264-269 EDN: ESLHLN
  37. Takano Y, Noma H, Yasuda K, et al. Retinal blood flow as a predictor of recurrence of macular edema after intravitreal ranibizumab injection in central retinal vein occlusion. Ophthalmic Res. 2021;64(6):1013–1019. doi: 10.1159/000519150
  38. Ueno Y, Iwase T, Goto K, et al. Association of changes of retinal vessels diameter with ocular blood flow in eyes with diabetic retinopathy. Sci Rep. 2021;11(1):4653. doi: 10.1038/s41598-021-84067-2
  39. Neroev VV, Ohocimskaya TD, Deryugina NE. Ocular blood flow evaluation with laser speckle flowgraphy in clinical practice for proliferative diabetic retinopathy. Bulletin of Pirogov National Medical ang Surgical Center. 2023;18(S4):96–99. doi: 10.25881/20728255_2023_18_4_S1_96 EDN: GCITYV
  40. Saito M, Saito W, Hirooka K, et al. Pulse waveform changes in macular choroidal hemodynamics with regression of acute central serous chorioretinopathy. Invest Ophthalmol Vis Sci. 2015;56(11):6515–6522. doi: 10.1167/iovs.15-17246
  41. Murakami Y, Ikeda Y, Akiyama M, et al. Correlation between macular blood flow and central visual sensitivity in retinitis pigmentosa. Acta Ophthalmol. 2015;93(8):e644–e648. doi: 10.1111/aos.12693
  42. Okhotsimskaya TD, Neroeva NV, Zolnikova IV, et al. Studying ocular blood flow in patients with retinitis pigmentosa using laser speckle flowgraphy. Russian Ophthalmological Journal. 2024;17(1):40–46. EDN: CSJSNV doi: 10.21516/2072-0076-2024-17-1-40-46
  43. Ho MM-C, Tsai Y-J, Chu Y-C, Liao Y-L. Evaluation of microcirculation in optic nerve head using laser speckle flowgraphy in active thyroid eye disease. Biomed Res Int. 2022;2022:9115270. doi: 10.1155/2022/9115270
  44. Hanazaki H, Yokota H, Aso H, et al. Evaluation of ocular blood flow over time in a treated retinal arterial macroaneurysm using laser speckle flowgraphy. Am J Ophthalmol Case Rep. 2021;21:101022. doi: 10.1016/j.ajoc.2021.101022
  45. Mitamura M, Kase S, Hirooka K, Ishida S. Laser speckle flowgraphy in juxtapapillary retinal capillary hemangioblastoma: a case report on natural course and therapeutic effect. Oncotarget. 2020;11(42):3800–3804. doi: 10.18632/oncotarget.27771
  46. Saito M, Noda K, Saito W, et al. Increased choroidal blood flow and choroidal thickness in patients with hypertensive chorioretinopathy. Graefes Arch Clin Exp Ophthalmol. 2020;258:233–240. doi: 10.1007/s00417-019-04511-y
  47. Hashimoto Y, Saito W, Mori S, et al. Increased macular choroidal blood flow velocity during systemic corticosteroid therapy in a patient with acute macular neuroretinopathy. Clin Ophthalmol. 2012;6:1645–1649. doi: 10.2147/OPTH.S35854
  48. Kase S, Hasegawa A, Hirooka K, et al. Laser speckle flowgraphy findings in a patient with radiation retinopathy. Int J Ophthalmol. 2022;15(1):172–174. doi: 10.18240/ijo.2022.01.26
  49. Arimura T, Shiba T, Takahashi M, et al. Assessment of ocular microcirculation in patients with end-stage kidney disease. Graefes Arch Clin Exp Ophthalmol. 2018;256:2335–2340. doi: 10.1007/s00417-018-4137-z
  50. Shiba T, Takahashi M, Maeno T. Pulse-wave analysis of optic nerve head circulation is significantly correlated with kidney function in patients with and without chronic kidney disease. J Ophthalmol. 2014;2014:291687. doi: 10.1155/2014/291687
  51. Shiba T, Takahashi M, Matsumoto T, Hori Y. Relationship between metabolic syndrome and ocular microcirculation shown by laser speckle flowgraphy in a hospital setting devoted to sleep apnea syndrome diagnostics. J Diabetes Res. 2017;2017:3141678. doi: 10.1155/2017/3141678
  52. Sato T, Sugawara J, Aizawa N, et al. Longitudinal changes of ocular blood flow using laser speckle flowgraphy during normal pregnancy. PLoS One. 2017;12(3):e0173127. doi: 10.1371/journal.pone.0173127
  53. Jones MT, Sanchez S, Patel RR, et al. Evaluation of ocular blood flow in the assessment of symptomatic carotid stenosis. Interv Neuroradiol. 2023;17:15910199231169844. doi: 10.1177/15910199231169844
  54. Tamaki Y, Araie M, Nagahara M, et al. The acute effects of cigarette smoking on human optic nerve head and posterior fundus circulation in light smokers. Eye (Lond). 2000;14–1:67–72. doi: 10.1038/eye.2000.15
  55. Okuno T, Sugiyama T, Tominaga M, et al. Effects of caffeine on microcirculation of the human ocular fundus. Jpn J Ophthalmol. 2002;46(2):170–176. doi: 10.1016/s0021-5155(01)00498-1
  56. Makimoto Y, Sugiyama T, Kojima S, Azuma I. Long-term effect of topically applied isopropyl unoprostone on microcirculation in the human ocular fundus. Jpn J Ophthalmol. 2002;46(1):31–35. doi: 10.1016/s0021-5155(01)00454-3
  57. Koseki N, Araie M, Tomidokoro A, et al. A placebo-controlled 3-year study of a calcium blocker on visual field and ocular circulation in glaucoma with low-normal pressure. Ophthalmology. 2008;115(11):2049–2057. doi: 10.1016/j.ophtha.2008.05.015

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. External appearance of the laser ocular blood flow analyzer LSFG-RetFlow (NIDEK, Japan).

Download (237KB)
3. Fig. 2. "Summary map" of the optic nerve head area of the left eye.

Download (675KB)
4. Fig. 3. LSFG Analyzer software interface. SBP, systolic blood pressure; DBP, diastolic blood pressure; IOP, intraocular pressure.

Download (65KB)
5. Fig. 4. LSFG Analyzer software interface.

Download (176KB)

Copyright (c) 2025 Eco-Vector



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.