Effect of zonular weakness on refractive outcomes of phacoemulsification

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

BACKGROUND: Zonular weakness caused by pseudoexfoliative syndrome is very common among residents of Northwest Russia. Along with the increasing risk of intraoperative complications, zonular weakness may worsen refractive outcomes of phacoemulsification, as it affects the effective lens position.

AIM: The work aimed to assess the effect of zonular weakness on refractive outcomes of phacoemulsification.

METHODS: The study included data from 282 patients (282 eyes) divided into the following three groups: patients with healthy zonules (n=109; group 1, control), patients with pseudoexfoliative syndrome (n=100; group 2), and patients with grade I lens subluxation caused by pseudoexfoliative syndrome and required capsular tension ring implantation (n=73; group 3). Intraocular lens power was calculated using the SRK/T formula. Optical biometry was performed using IOL-Master 500 device (Carl Zeiss, Germany). The criteria for accuracy of intraocular lens power calculations were the mean calculation error and modulus of the mean calculation error.

RESULTS: The mean calculation errors were 0.00±0.39 D (control), 0.12±0.50 D (group 2), and 0.26±0.59 D (group 3) (p=0.003), indicating a hyperopic shift in groups 2 and 3. The moduli of the mean calculation error were 0.32±0.30, 0.37±0.28, and 0.52±0.45 D, respectively (p <0.001), suggesting lower predictability of refractive outcomes of phacoemulsification in patients with zonular instability.

CONCLUSION: Patients with zonular weakness showed a hyperopic shift caused by a deeper lens position after surgery. To achieve optimal refractive outcomes in this population, A-constant for an intraocular lens should be further optimized.

全文:

受限制的访问

作者简介

Dmitrii Belov

City Multifield Hospital No. 2; Saint Petersburg State University

Email: belovd1990@gmail.com
ORCID iD: 0000-0003-0776-4065
SPIN 代码: 2380-2273

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Vitaly Potemkin

City Multifield Hospital No. 2; Academican I.P. Pavlov First St. Petersburg State Medical University

编辑信件的主要联系方式.
Email: potem@inbox.ru
ORCID iD: 0000-0001-7807-9036
SPIN 代码: 3132-9163

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Vadim Nikolaenko

City Multifield Hospital No. 2; Saint Petersburg State University

Email: dr.Nikolaenko@mail.ru
ORCID iD: 0000-0002-6393-1289
SPIN 代码: 4906-2542

MD, Dr. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Bernora Ruziboeva

Saint Petersburg State University

Email: st072295@student.spbu.ru
ORCID iD: 0009-0007-1180-6631
俄罗斯联邦, Saint Petersburg

参考

  1. Melles RB, Holladay JT, Chang WJ. Accuracy of intraocular lens calculation formulas. Ophthalmology. 2018;125(2):169–178. doi: 10.1016/j.ophtha.2017.08.027
  2. Belov DF, Danilenko EV, Nikolaenko VP, Potemkin VV. Evaluation of the accuracy of modern intraocular lens calculation formulas when optical biometry is not possible. Russian Annals of Ophthalmology. 2024;140(2):34–39. doi: 10.17116/oftalma202414002134 EDN: SJKQYV
  3. Chen Y-A, Hirnschall N, Findl O. Evaluation of 2 new optical biometry devices and comparison with the current gold standard biometer. J Cataract Refract Surg. 2011;37(3):513–517. doi: 10.1016/j.jcrs.2010.10.041
  4. Hoffer KJ. Accuracy of ultrasound intraocular lens calculation. Arch Ophthalmol. 1981;99(10):1819–1823. doi: 10.1001/archopht.1981.03930020693014
  5. Jin H, Holzer MP, Rabsilber T, et al. Intraocular lens power calculation after laser refractive surgery: corrective algorithm for corneal power estimation. J Cataract Refract Surg. 2010;36(1):87–96. doi: 10.1016/j.jcrs.2009.07.011
  6. Erickson P. Effects of intraocular lens position errors on postoperative refractive error. J Cataract Refract Surg. 1990;16(3):305–311. doi: 10.1016/s0886-3350(13)80699-2
  7. Potyomkin VV, Ageeva EV. Zonular instability in patients with pseudoexfoliative syndrome: the analysis of 1000 consecutive phacoemulsifications. Ophthalmology Reports. 2018;11(1):41–46. doi: 10.17816/OV11141-46 EDN: YVLXBA
  8. Hoffer KJ, Savini G. Update on intraocular lens power calculation study protocols: the better way to design and report clinical trials. Ophthalmology. 2021;128(11):115–120. doi: 10.1016/j.ophtha.2020.07.005
  9. Müller M, Pawlowicz K, Böhm M, et al. Impact of pseudoexfoliative syndrome on effective lens position, anterior chamber depth changes, and visual outcome after cataract surgery. Clin Ophthalmol. 2021;15:2867–2873. doi: 10.2147/OPTH.S307487
  10. Gür Güngör S, Akman A, Asena L, et al. Changes in anterior chamber depth after phacoemulsification in pseudoexfoliative eyes and their effect on accuracy of intraocular lens power calculation. Turk J Ophthalmol. 2016;46(6):255–258. doi: 10.4274/tjo.56659
  11. Vokrojová M, Havlíčková L, Brožková M, Hlinomazová Z. Effect of capsular tension ring implantation on postoperative rotational stability of a toric intraocular lens. J Refract Surg. 2020;36(3):186–192. doi: 10.3928/1081597X-20200120-01
  12. Kulikov AN, Danilenko EV, Dzilikhov AA. Assessment of the capsular tension ring implantation effect on the IOL position in the long term period after uncomplicated phacoemulsification. Ophthalmology in Russia. 2021;18(4):827–832. doi: 10.18008/1816-5095-2021-4-827-832 EDN: LFRIVQ
  13. Weber M, Hirnschall N, Rigal K, Findl O. Effect of a capsular tension ring on axial intraocular lens position. J Cataract Refract Surg. 2015;41(1):122–125. doi: 10.1016/j.jcrs.2014.04.035
  14. Belov DF, Nikolaenko VP. Effect of capsular tension ring implantation during phacoemulsification on postoperative refraction. Ophthalmology in Russia. 2022;19(3):489–492. doi: 10.18008/1816-5095-2022-3-489-492 EDN: BXSRKP
  15. Belov D, Nikolaenko V, Potemkin V. Effect of capsular tension ring implantation during phacoemulsification on postoperative refraction. Eur J Ophthalmol. 2022;32(4):2189–2193. doi: 10.1177/11206721211051920
  16. Belov DF, Nikolaenko VP. The influence of concomitant glaucoma on IOL power calculation accuracy. Ophthalmology Reports. 2020;13(1):5–9. doi: 10.17816/OV19025 EDN: OZOELI
  17. Belov DF, Nikolaenko VP. Alternative method of intraocular lens power calculation in eyes with short axial length. Russian Annals of Ophthalmology. 2022;138(3):24–28. doi: 10.17116/oftalma202213803124 EDN: WSWRBP
  18. Belov DF, Potemkin VV, Nikolaenko VP. Optimization of intraocular lens power calculation in pseudoexfoliation syndrome. Russian Annals of Ophthalmology. 2021;137(4):38–42. doi: 10.17116/oftalma202113704138 EDN: XMEDXT
  19. Chen H, Lin H, Lin Z, et al. Distribution of axial length, anterior chamber depth, and corneal curvature in an aged population in South China. BMC Ophthalmol. 2016;16(1):47. doi: 10.1186/s12886-016-0221-5
  20. Potyomkin VV, Goltsman EV. Cataract surgery in pseudoexfoliation syndrome. Ophthalmology Reports. 2020;13(1):37–42. doi: 10.17816/OV25739 EDN: DQZPOW
  21. Abulafia A, Barrett GD, Koch DD, et al. Protocols for studies of intraocular lens formula accuracy. Am J Ophthalmol. 2016;164:149–150. doi: 10.1016/j.ajo.2016.01.010
  22. Sanders D, Retzlaff J, Kraff M, et al. Comparison of the accuracy of the Binkhorst, Colenbrander, and SRK implant power prediction formulas. J Am Intraocul Implant Soc. 1981;7(4):337–340. doi: 10.1016/s0146-2776(81)80031-6

补充文件

附件文件
动作
1. JATS XML
2. Figure 1

下载 (73KB)
3. Figure 2

下载 (65KB)
4. Figure 3

下载 (68KB)

版权所有 © Eco-Vector, 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.