Using equivalent keratometric readings in calculating the optical power of a multifocal intraocular lens

封面


如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

BACKGROUND: Modern keratotopography allows calculating Equivalent Keratometer Readings (EKR), which take additionally into account in keratometry the radius of curvature of corneal posterior surface, and this could lead to more accurate calculation of the spherical equivalent (SE) of the intraocular lens.

AIM: The aim of this study is to determine the accuracy of calculating the SE of multifocal intraocular lens according to EKR data, depending on the formula used and the corneal zone.

MATERIALS AND METHOD: The study included 78 patients who underwent femtolaser-assisted phacoemulsification, multifocal intraocular lens implantation and achievement of the target refraction at different distances. Retrospective calculation of the optical power of the intraocular lens was performed using biometric data from OA-2000 and EKR (zones from 0.5 to 5 mm in increments of 0.5 mm) using 10 formulas (SRK/T, Holladay 1, Holladay 2, Haigis, Hoffer Q, Barrett 2 Universal, Olsen, Kane, EVO, Hill RBF). For each combination of keratometry zone/formula were calculated: mean error of predicted refraction (ME), its difference from zero, and after intraocular lens constant optimization — mean (MAE) and median (MedAE) absolute errors, standard deviation (SD).

RESULTS: Up to the 2.5 mm zone, ME is shifted towards hypermetropia, and from the 3 mm zone, ME begins to shift towards myopia according to all formulas. Minimal MAE, MedAE and SD values were detected in peripheral corneal zones (3–5 mm) for most formulas. The best indicators were demonstrated by the formula Haigis in zones 3.5–5 mm.

CONCLUSIONS: The most accurate calculation of the SE of a multifocal intraocular lens using EKR is possible when using the Haigis formula in 3.5–5 mm zones.

全文:

受限制的访问

作者简介

Ernest V. Boiko

S. Fyodorov Eye Microsurgery Federal State Institution; North-Western State Medical University named after I.I. Mechnikov; Saint Petersburg State University

Email: boiko111@list.ru
ORCID iD: 0000-0002-7413-7478
SPIN 代码: 7589-2512

MD, Dr. Sci. (Medicine), Professor, Honored Doctor of the Russian Federation

俄罗斯联邦, Saint Petersburg; Saint Petersburg; Saint Petersburg

Yurii M. Petrosyan

S. Fyodorov Eye Microsurgery Federal State Institution; North-Western State Medical University named after I.I. Mechnikov

编辑信件的主要联系方式.
Email: petrosyan.yurij@yandex.ru
ORCID iD: 0000-0003-4081-0078
SPIN 代码: 7524-8382

MD

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Sergei V. Shukhaev

S. Fyodorov Eye Microsurgery Federal State Institution

Email: shukhaevsv@gmail.com
ORCID iD: 0000-0001-7047-615X
SPIN 代码: 7157-4820

MD, Cand. Sci. (Medicine)

俄罗斯联邦, Saint Petersburg

Anton V. Molodkin

S. Fyodorov Eye Microsurgery Federal State Institution

Email: molodkin.anton@gmail.com
ORCID iD: 0009-0008-0271-269X
SPIN 代码: 3057-1308

MD

俄罗斯联邦, Saint Petersburg

参考

  1. Boiko EV, Vinnitskiy DA. Rehabilitation of patients after implantation of bifocal and trifocal intraocular lens. Fyodorov Journal of Ophthalmic Surgery. 2018;(2):67–74. EDN: XSNEBV doi: 10.25276/0235-4160-2018-2-67-74
  2. Malyugin BE, Sobolev NP, Fomina OV. Visual assessment performance after implantation of a new trifocal intraocular lens. Fyodorov Journal of Ophthalmic Surgery. 2018;(4):6–14. EDN: ZXOZBV doi: 10.25276/0235-4160-2017-4-6-14
  3. Kulikov AN, Kotova NA, Kokareva EV. K Toward the calculation of IOL optical power using “IOLmaster” and several keratotopography methods. Modern Technologies in Ophthalmology. 2016;(3):188–192. (In Russ.) EDN: WTIUHD
  4. Trubilin VN, Il’inskaya IA. Corneal refractive power measurement using different methods. Kataraktal’naya i refrakcionnaya hirurgiya. 2014;14(2):4–9. (In Russ.) EDN: SFOVER
  5. Karunaratne N. Comparison of the Pentacam equivalent keratometry reading and IOL Master keratometry measurement in intraocular lens power calculations. Clin Exp Ophthalmol. 2013;41(9): 825–834. doi: 10.1111/ceo.12124
  6. Savini G, Hoffer KJ, Schiano et al. Simulated keratometry versus total corneal power by ray tracing. Cornea. 2017;36(11):1368–1372. doi: 10.1097/ico.0000000000001343
  7. Kiseleva TN, Oganesyan OG, Romanova LI, et al. Optical biometry of the eye: the principle and the diagnostic potential of the method. Russian Pediatric Ophthalmology. 2017;12(1):35–42. EDN: YTFEEX doi: 10.18821/1993-1859-2017-12-1-35-42
  8. Kulikov AN, Kokareva EV, Kotova NA. Comparison of the results of the eye biometrics using different instruments. Pacific Medical Journal. 2017;(2):53–54. EDN: YPDDNL doi: 10.17238/PmJ1609-1175.2017.2.53-55
  9. Mukhija R, Gupta N. Advances in anterior segment examination. Community Eye Health. 2019; 32(107):S5–S6.
  10. Kanclerz P, Khoramnia R, Wang X. Current developments in corneal topography and tomography. Diagnostics (Basel). 2021;11(8):1466. doi: 10.3390/diagnostics11081466
  11. Fan R, Chan TC, Prakash G, Jhanji V. Applications of corneal topography and tomography: a review. Clin Exp Ophthalmol. 2018;46(2):133–146. doi: 10.1111/ceo.13136
  12. Saglik A, Celik H, Aksoy M. An analysis of Scheimpflug Holladay-equivalent keratometry readings following corneal collagen cross-linking. Beyoglu Eye J. 2019;4(2):62–68. doi: 10.14744/bej.2019.35220
  13. Shammas HJ, Hoffer KJ, Shammas MC. Scheimpflug photography keratometry readings for routine intraocular lens power calculation. J Cataract Refract Surg. 2009;35(2):330–334. doi: 10.1016/j.jcrs.2008.10.041
  14. Wang Q, Savini G, Hoffer KJ, et al. A comprehensive assessment of the precision and agreement of anterior corneal power measurements obtained using 8 different devices. PLoS One. 2012;7(9): e45607. doi: 10.1371/journal.pone.0045607
  15. Savini G, Barboni P, Carbonelli M, Hoffer KJ. Comparison of methods to measure corneal power for intraocular lens power calculation using a rotating Scheimpflug camera. J Cataract Refract Surg. 2013;39(4):598–604. doi: 10.1016/j.jcrs.2012.11.022
  16. Næser K, Savini G, Bregnhøj JF. Corneal powers measured with a rotating Scheimpflug camera. Br J Ophthalmol. 2016;100(9): 1196–200. doi: 10.1136/bjophthalmol-2015-307474
  17. Módis JrL, Szalai E, Kolozsvári B, et al. Keratometry evaluations with the Pentacam high resolution in comparison with the automated keratometry and conventional corneal topography. Cornea. 2012;31(1):36–41. doi: 10.1097/ICO.0b013e318204c666
  18. Kulikov AN, Danilenko EV, Kozhevnikov EYu. Comparison of keratometry versions in patients with corneal astigmatism. Russian Ophthalmological Journal. 2022;15(2):84–92. EDN: EXQQCI doi: 10.21516/2072-0076-2022-15-2-supplement-84-92
  19. Sheridan L, Balaji KG, John MH, Natalka AM. Refractive outcomes after cataract surgery: Scheimpflug keratometry versus standard automated keratometry in virgin corneas. J Cataract Refract Surg. 2011;37(11):1984–1987. doi: 10.1016/j.jcrs.2011.05.031
  20. Shammas HJ, Hoffer KJ, Shammas MC. Scheimpflug photography keratometry readings for routine intraocular lens power calculation. J Cataract Refract Surg. 2009;35(2):330–334. doi: 10.1016/j.jcrs.2008.10.041

补充文件

附件文件
动作
1. JATS XML
2. Fig. 1. Error of predicted postoperative refraction

下载 (149KB)
3. Fig. 2. Reliability of the difference between the expected refraction and zero

下载 (316KB)
4. Fig. 3. Mean absolute error (MAE) of the IOL’s spherical equivalent calculation

下载 (295KB)
5. Fig. 4. Median absolute error (MedAE) of the IOL’s spherical equivalent calculation

下载 (298KB)
6. Fig. 5. Standard deviation (SD) of the mean absolute error (MAE)

下载 (327KB)

版权所有 © Eco-Vector, 2024



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77-65574 от 04 мая 2016 г.