Analysis and Evaluation of Modern Approaches to Development of Medical Drugs Using Micro- and Nanotechnologies

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

INTRODUCTION: TDespite the achievements of the modern medicine, use of some medical drugs (MDs) is associated with both the absence of a significant therapeutic effect due to peculiarities of the physico-chemical interaction in the internal environment of an organism, and with the adverse effect on organs and tissues. The advanced technologies of creation of micro- and nanoparticles will permit to improve pharmacokinetics and pharmacodynamics of the drug, its bioavailability and solubility, the ability of crossing blood-brain barriers, and to reduce undesirable systemic effects. MDs using micro- and nanoparticles, have a targeted effect on the focus of pathological lesion. An important additional advantage is a possibility of using micro- and nanoparticles in development of long-acting MDs. The main active substances immobilized to micro- and nanoparticles, open up new prospects for effective treatment of different pathological conditions (neoplasms, diseases of cardiovascular and central nervous system, inflammatory processes, wounds), and for realization of new imaging capabilities in foci of a pathological process, which is especially important in diagnostic procedures.

CONCLUSION: The article presents a summary of the ideas of methods of micro- and nanoencapsulation, and assessments of the prospects for the development of drugs for the correction of pathological conditions using innovative technologies.

Full Text

Restricted Access

About the authors

Evgeniy V. Raguzin

State Research and Testing Institute of Military Medicine

Email: evgeny.raguzin@yandex.ru
ORCID iD: 0000-0002-1707-6912
SPIN-code: 8524-3195

MD, Cand. Sci (Med.)

Russian Federation, Saint-Petersburg

Mikhail A. Yudin

State Research and Testing Institute of Military Medicine

Email: mikhail.judin@gmail.com
ORCID iD: 0000-0001-5646-0880
SPIN-code: 4763-9666

MD, Dr. Sci. (Med.), Associate Professor

Russian Federation, Saint-Petersburg

Daniil D. Glushenko

State Research and Testing Institute of Military Medicine

Author for correspondence.
Email: glushenko.daniil.d@yandex.ru
ORCID iD: 0000-0001-9425-6565
SPIN-code: 2934-6129

Kursant fourth course. Third faacultet

Russian Federation, Saint-Petersburg

Nikolay G. Vengerovich

State Research and Testing Institute of Military Medicine

Email: Gniiivm_15@mil.ru
ORCID iD: 0000-0003-3219-341X
SPIN-code: 6690-9649

MD, Dr. Sci. (Med.)

Russian Federation, Saint-Petersburg

Ol’ga G. Raguzina

State Research and Testing Institute of Military Medicine

Email: Raguzinaog@yandex.ru
ORCID iD: 0000-0002-2139-1376
SPIN-code: 6038-3008
Russian Federation, Saint-Petersburg

Tat’yana B. Pechurina

State Research and Testing Institute of Military Medicine

Email: tat79@list.ru
ORCID iD: 0000-0002-8228-2800
SPIN-code: 7890-4203

Cand. Sci (Tech.)

Russian Federation, Saint-Petersburg

Timur V. Shefer

State Research and Testing Institute of Military Medicine

Email: 79043315812@yandex.ru
ORCID iD: 0000-0001-7303-0591
SPIN-code: 8739-8385

MD, Dr. Sci. (Med.)

Russian Federation, Saint-Petersburg

Igor’ M. Ivanov

State Research and Testing Institute of Military Medicine

Email: igor611ivanov@gmail.com
ORCID iD: 0000-0002-8708-8484
SPIN-code: 1518-3306

MD, Cand. Sci (Med.)

Russian Federation, Saint-Petersburg

References

  1. Ashrafizadeh M, Mirzaei S, Gholami MH, et al. Hyaluronic acid-based nanoplatforms for Doxorubicin: A review of stimuli-responsive carriers, co-delivery and resistance suppression. Carbohydrate Polymers. 2021;272:118491. doi: 10.1016/j.carbpol.2021.118491
  2. Press AT, Babic P, Hoffmann B, et al. Targeted delivery of a phosphoinositide 3-kinase γ inhibitor to restore organ function in sepsis. EMBO Molecular Medicine. 2021;13(10):14436. doi: 10.15252/emmm.202114436
  3. Kumari P, Meena A. Application of enzyme-mediated cellulose nanofibers from lemongrass waste for the controlled release of anticancer drugs. Environmental Science and Pollution Research. 2021;28(34):46343–55 doi: 10.1007/s11356-020-08358-3
  4. Solhjoo A, Sobhani Z, Sufali A, et al. Exploring pH dependent delivery of 5-fluorouracil from functionalized multi-walled carbon nanotubes. Colloids and Surfaces. B: Biointerfaces. 2021;205:111823. doi: 10.1016/j.colsurfb.2021.111823
  5. Komedchikova EN, Shipunova VO, Deyev SM. Kombinirovannoye vozdeystviye biosovmestimymi, biodegradiruyemymi adresnymi konstruktsiyami kak effektivnyy metod onkoteranostiki. In: Perspektivnyye napravleniya fiziko-khimicheskoy biologii i biotekhnologii; Moscow, 10–13 February 2020. Moscow; 2020. P. 132. (In Russ).
  6. Mainini F, Bonizzi A, Sevieri M, et al. Protein–Based Nanoparticles for the Imaging and Treatment of Solid Tumors: The Case of Ferritin Nanocages, a Narrative Review. Pharmaceutics. 2021;13(12):2000. doi: 10.3390/pharmaceutics13122000
  7. Hornok V. Serum Albumin Nanoparticles: Problems and Prospects. Polymers. 2021;13(21):3759. doi: 10.3390/polym13213759
  8. Bojat I, Oganesyan EA, Balabanyan VYu, et al. Dosage forms of paclitaxel. Russian Journal of Biotherapy. 2009;8(3):37–44. (In Russ).
  9. Priyanka M, Samipta S, Nidhi M, et al. Chapter 20: Albumin–based nanomaterials in drug delivery and biomedical applications. In: Bera H, Hossain CM, Saha S, editors. Biopolymer–Based Nanomaterials in Drug Delivery and Biomedical Applications. Elsiver; 2021. P. 465–96. doi: 10.1016/B978-0-12-820874-8.00012-9
  10. Thakare S, Shaikh A, Bodas D, et al. Application of dendrimer-based nanosensors in immunodiagnosis. Colloids and Surfaces. B: Biointerfaces. 2022;209(2):112174. doi: 10.1016/j.colsurfb.2021.112174
  11. Amjad MW. Dendrimers in anticancer targeted drug delivery: accomplishments, challenges and directions for future. Pharmacy & Pharmacology. 2021;9(1):4–16. (In Russ). doi: 10.19163/2307-9266-2021-9-1-4-16
  12. Chauhan A. Dendrimers for Drug Delivery. Molecules. 2018;23(4):938. doi: 10.3390/molecules23040938
  13. Shcharbin DG, Klajnert B, Bryszewska M. Dendrimers and their application in biology and medicine. Proceedings of the National Academy of Sciences of Belarus. Series of Biological Sciences. 2010;(2):109–20. (In Russ).
  14. Zelepukin IV, Shilova ON, Mirkasymov AB, et al. Universal’nyye podkhody k upravleniyu farmakokinetikoy nanoagentov. In: Perspektivnyye napravleniya fiziko-khimicheskoy biologii i biotekhnologii; Moscow, 10–13 February 2020. Moscow; 2020. P. 12. (In Russ).
  15. Postnov WN, Naumysheva YeB, Korolev DW, et al. Nano-sized carriers for drug delivery applications. Biotekhnosfera. 2013;(6):16–27. (In Russ).
  16. Dhand C, Dwivedi N, Loh XJ, et al. Methods and strategies for the synthesis of diverse nanoparticles and their applications: a comprehensive overview. RSC Advances. 2015;5(127):105003–37. doi: 10.1039/C5RA19388E
  17. Laza–Knoerr AL, Gref R, Couvreur P. Cyclodextrins for drug delivery. Journal of Drug Targeting. 2010;18(9):645–56. doi: 10.3109/10611861003622552
  18. Gadade DD, Pekamwar SP. Cyclodextrin Based Nanoparticles for Drug Delivery and Theranostics. Advanced Pharmaceutical Bulletin. 2020;10(2):166–83. doi: 10.34172/apb.2020.022
  19. Desai N, Momin M, Khan T, et al. Metallic nanoparticles as drug delivery system for the treatment of cancer. Expert Opinion on Drug Delivery. 2021;18(9):1261–90. doi: 10.1080/17425247.2021.1912008
  20. Laurent G, Benbalit C, Chrétien C, et al. Characterization and biodistribution of Au nanoparticles loaded in PLGA nanocarriers using an original encapsulation process. Colloids and Surfaces. B: Biointerfaces. 2021;205:111875. doi: 10.1016/j.colsurfb.2021.111875
  21. Samrot AV, Sean TS, Kudaiyappan T, et al. Production, characterization and application of nanocarriers made of polysaccharides, proteins, bio-polyesters and other biopolymers: A review. International Journal of Biological Macromolecules. 2020;165(Pt B):3088–105. doi: 10.1016/j.ijbiomac.2020.10.104
  22. Gültekin HE, Değim Z. Biodegradable Polymeric Nanoparticles are Effective Systems for Controlled Drug Delivery. FABAD. Journal of Pharmaceutical Sciences. 2013;38(2):107–18.
  23. Manzano M, Vallet–Revi M. Mesoporous silica nanoparticles in nanomedicine applications. Journal of Materials Science. Materials in Medicine. 2018;29(5):65. doi: 10.1007/s10856-018-6069-x
  24. Abaeva LF, Shumsky VI, Petritskaya EN, et al. Nanoparticles and nanotechnologies: today and beyond. Almanac of Clinical Medicine. 2010;(22):10–6. (In Russ).
  25. Sutti A, Mishra V, Nayak P, et al. Carbon Nanotubes as Emerging Nanocarriers in Drug Delivery: An Overview. International Journal of Pharmaceutical Quality Assurance. 2020;11(3):373–8. doi: 10.25258/ijpqa.11.3.11
  26. Li W, Chen X. Gold nanoparticles for photoacoustic imaging. Nanomedicine (London, England). 2015;10(2):299–320. doi: 10.2217/nnm.14.169
  27. Zivic F, Grujovic N, Mitrovic S, et al. Chapter. Characteristics and Applications of Silver Nanoparticles. In: Commercialization of nanotechnologies – a case study approach. Springer, Cham.; 2018. P. 227–73. doi: 10.1007/978-3-319-56979-6_10
  28. Zhao M–X, Zhu B–J. The research and applications of quantum dots as nano-carriers for targeted drug delivery and cancer therapy. Nanoscale Research Letters. 2016;11(1):207. doi: 10.1186/s11671-016-1394-9
  29. Cagel M, Tesan FC, Bernabeu E, et al. Polymeric mixed micelles as nanomedicines: Achievements and perspectives. European Journal of Pharmaceutics and Biopharmaceutics. 2017;113:211–28. doi: 10.1016/j.ejpb.2016.12.019
  30. Mozafari MR, Khosravi–Darani K. Chapter 7. An Overview of Liposome – Derived Nanocarrier Technologies. In: Nanomaterials and Nanosystems for Biomedical Applications. Springer, Dordrecht; 2007. P. 113–123. doi: 10.1007/978-1-4020-6289-6_7
  31. Zaioncz S, Khalil NM, Mainardes RM. Exploring the Role of Nanoparticles in Amphotericin B Delivery. Current Pharmaceutical Design. 2017;23(3):509–21. doi: 10.2174/1381612822666161027103640
  32. Deepa K, Singha S, Panda T. Doxorubicin nanoconjugates. Journal of Nanoscience and Nanotechnology. 2014;14(1):892–904. doi: 10.1166/jnn.2014.8765
  33. Pentak D, Maciążek–Jurczyk M. Nonspecific nanocarriers for doxorubicin and cytarabine in the presence of fatted and defatted human albumin. Journal of Molecular Liquids. 2019;278:115–23. doi: 10.1016/j.molliq.2019.01.085
  34. Anselmo AC, Mitragotri S. Nanoparticles in the clinic. Bioengineering & Translational Medicine. 2016;1(1):10–29. doi: 10.1002/btm2.10003
  35. Le NTT, Pham LPT, Nguyen DHT, et al. Chapter. Liposome–based nanocarrier system for phytoconstituents. In: Gupta M, Chauhan DN, Sharma V, et al., editors. Novel Drug Delivery Systems for Phytoconstituents. 1st ed. CRC Press; 2019. P. 45–68. doi: 10.1201/9781351057639-3
  36. Wang Y, Dou L, He H, et al. Multifunctional nanoparticles as nanocarrier for vincristine sulfate delivery to overcome tumor multidrug resistance. Molecular Pharmaceutics. 2014;11(3):885–94. doi: 10.1021/mp400547u
  37. Al–Musawi S, Kadhim MJ, Hindi NKK. Folated–nanocarrier for paclitaxel drug delivery in leukemia cancer therapy. Journal of Pharmaceutical Sciences and Research. 2018;10(4):749–54.
  38. Barkat NA, Beg S, Potto FH, et al. Nanopaclitaxel therapy: an evidence based review on the battle for next-generation formulation challenges. Nanomedicine (London, England). 2019;14(10):1323–41. doi: 10.2217/nnm-2018-0313
  39. Miller AD. Lipid-based nanoparticles in cancer diagnosis and therapy. Journal of Drug Delivery. 2013;2013:165981. doi: 10.1155/2013/165981
  40. Boulikas T. Molecular mechanisms of cisplatin and its liposomally encapsulated form, Lipoplatin™. Lipoplatin™ as a chemotherapy and antiangiogenesis drug. Cancer Therapy. 2007;5:351–76.
  41. Farooq MA, Aquib M, Farooq A, et al. Recent progress in nanotechnology-based novel drug delivery systems in designing of cisplatin for cancer therapy: an overview. Artificial Cells, Nanomedicine, and Biotechnology. 2019;47(1):1674–92. doi: 10.1080/21691401.2019.1604535
  42. Lamichhane N, Udayakumar TS, D'Souza WD, et al. Liposomes: Clinical Applications and Potential for Image–Guided Drug Delivery. Molecules. 2018;23(2):288. doi: 10.3390/molecules23020288
  43. Bhattacharya AA, Grüne T, Curry S. Crystallographic analysis reveals common modes of binding of medium and long-chain fatty acids to human serum albumin. Journal of Molecular Biology. 2000;303(5):721–32. doi: 10.1006/jmbi.2000.4158

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 4. Structural formula of Sugammadex®.

Download (61KB)
3. Fig. 1. Protein-based ferritin nanoparticles as a system for delivery of oncological therapeutic means and imaging agents [6, with modification].

Download (80KB)
4. Fig. 2. Molecular structure of human serum albumin.

Download (39KB)
5. Fig. 3. Structural formula of dendrimer.

Download (40KB)
6. Fig. 5. Scheme of variability of multifunctional particle in different kinds of physicochemical interaction and variants of practical use. Notes: FAV – photoacoustic visualization, RNA – ribonucleic acid.

Download (132KB)

Copyright (c) 2022 ООО "Эко-Вектор"


Media Registry Entry of the Federal Service for Supervision of Communications, Information Technology and Mass Communications (Roskomnadzor) PI No. FS77-76803 dated September 24, 2019.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies