Pathogenetic Aspects of Intraventricular Hemorrhages in Extremely Premature Infants

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

INTRODUCTION: Intraventricular hemorrhage (IVH) is one of the most common types of the brain damage in newborns with extremely low and very low body mass. The main source of IVH in the extremely premature infants is the germinal matrix. This is a subependymal structure of the brain consisting of poorly differentiated, randomly arranged cells, well vascularized with vessels with a poor connective-tissue support. The germinal matrix a key supplier of neurons and glial cells of the brain is unique among the brain regions for its specific rate of angiogenesis and selective vulnerability to hemorrhages during its development. Etiology and pathogenesis of IVH in premature infants are highly multifactorial and have not been fully studied. In this review, the data on the key points of the pathogenesis of IVH in premature infants are generalized.

CONCLUSION: IVH is a potentially destructive disease, in the study of which a certain progress has been achieved in elucidating the causes and mechanisms of brain damage. In-depth understanding of the key points of the pathogenesis of intraventricular hemorrhage will permit to choose the optimal management tactics and develop new approaches to prevention and treatment of this pathology.

Full Text

Restricted Access

About the authors

Ol'ga P. Saryeva

Ivanovo Scientific-Research Institute named after V. N. Gorodkov

Author for correspondence.
Email: saryevaolga@mail.ru
ORCID iD: 0000-0001-8255-2877
SPIN-code: 1436-3998

MD, Cand. Sci. (Med.)

Russian Federation, Ivanovo

Elena V. Protsenko

Ivanovo Scientific-Research Institute named after V. N. Gorodkov

Email: procenko_e_v@mail.ru
ORCID iD: 0000-0003-0490-5686
SPIN-code: 1343-3881

MD, Dr. Sci. (Med.)

Russian Federation, Ivanovo

References

  1. Saryieva OP, Protsenko EV, Kulida LV. Intraventricular hemorrhages in premature newborns: predictors of development. Rossiyskiy Vestnik Perinatologii i Pediatrii. 2022;67(3):11–7. (In Russ). doi: 10.21508/1027-4065-2022-67-3-11-17
  2. Deger J, Goethe EA, LoPresti MA, et al. Intraventricular Hemorrhage in Premature Infants: A Historical Review. World Neurosurg. 2021; 153:21–5. doi: 10.1016/j.wneu.2021.06.043
  3. Piccolo B, Marchignoli M, Pisani F. Intraventricular hemorrhage in preterm newborn: Predictors of mortality. Acta Biomed. 2022; 93(2):e2022041. doi: 10.23750/abm.v93i2.11187
  4. Siddappa AM, Quiggle GM, Lock E, et al. Predictors of severe intraventricular hemorrhage in preterm infants under 29-weeks gestation. J Matern Fetal Neonatal Med. 2021;34(2):195–200. doi: 10.1080/14767058.2019.1601698
  5. Sharma DR, Agyemang A, Ballabh P. Cerebral gray matter injuries in infants with intraventricular hemorrhage. Semin Perinatol. 2022;46(5):151595. doi: 10.1016/j.semperi.2022.151595
  6. Safina AI, Volyanyuk EV. Long-term neuropsychiatric outcomes of deeply premature infants, prospects for diagnosis and correction. Rossiyskiy Vestnik Perinatologii i Pediatrii. 2020;65(5):227–31. (In Russ). doi: 10.21508/1027-4065-2020-65-5-227-231
  7. Hinojosa–Rodríguez M, Harmony T, Carrillo–Prado C, et al. Clinical neuroimaging in the preterm infant: Diagnosis and prognosis. Neuroimage Clin. 2017;16:355–68. doi: 10.1016/j.nicl.2017.08.015
  8. Glukhov BM, Baydarbekova AK. Outcomes and rehabilitation potential in children with intraventricular hemorrhages in the perinatal period. Zhurnal Nevrologii i Psikhiatrii imeni S.S. Korsakova. 2021; 121(4):19–24. (In Russ). doi: 10.17116/jnevro202112104119
  9. Coletti AM, Singh D, Kumar S, et al. Characterization of the ventricular-subventricular stem cell niche during human brain development. Development. 2018;145(20):dev170100. doi: 10.1242/dev.170100
  10. Snyder EJ, Pruthi S, Hernanz–Schulman M. Characterization of germinal matrix hemorrhage in extremely premature infants: recognition of posterior location and diagnostic pitfalls. Pediatr Radiol. 2022;52(1):75–84. doi: 10.1007/s00247-021-05189-3
  11. Guillot M, Chau V, Lemyre B. Routine imaging of the preterm neonatal brain. Paediatr Child Health. 2020;25(4):249–62. doi: 10.1093/pch/pxaa033
  12. Leijser LM, de Vries LS. Preterm brain injury: Germinal matrix-intraventricular hemorrhage and post-hemorrhagic ventricular dilatation. Handb Clin Neurol. 2019;162:173–99. doi: 10.1016/B978-0-444-64029-1.00008-4
  13. Tan AP, Svrckova P, Cowan F, et al. Intracranial hemorrhage in neonates: A review of etiologies, patterns and predicted clinical outcomes. Eur J Paediatr Neurol. 2018;22(4):690–717. doi: 10.1016/j.ejpn.2018.04.008
  14. Egesa WI, Odoch S, Odong RJ, et al. Germinal Matrix-Intraventricular Hemorrhage: A Tale of Preterm Infants. Int J Pediatr. 2021;2021: 6622598. doi: 10.1155/2021/6622598
  15. Protsenko EV, Peretiatko LP, Saryeva OP. Pathomorphology of the ventricular germinal zone and neocortex in newborns with posthemorrhagic hydrocephalus. Arkhiv Patologii. 2017;79(2):36–40. (In Russ). doi: 10.17116/patol201779236-40
  16. Takashima S, Mito T, Ando Y. Pathogenesis of periventricular white matter hemorrhages in preterm infants. Brain Dev. 1986;8(1):25–30. doi: 10.1016/s0387-7604(86)80116-4
  17. Tortora D, Severino M, Malova M, et al. Variability of cerebral deep venous system in preterm and term neonates evaluated on MR SWI venography. AJNR Am J Neuroradiol. 2016;37(11):2144–9. doi: 10.3174/ajnr.A4877
  18. Tortora D, Severino M, Malova M, et al. Differences in subependymal vein anatomy may predispose preterm infants to GMH-IVH. Arch Dis Child Fetal Neonatal Ed. 2018;103(1):F59–65. doi: 10.1136/archdischild-2017-312710
  19. Ghazi–Birry HS, Brown WR, Moody DM, et al. Human germinal matrix: venous origin of hemorrhage and vascular characteristics. AJNR Am J Neuroradiol. 1997;18(2):219–29.
  20. Luo J, Luo Y, Zeng H, et al. Research Advances of Germinal Matrix Hemorrhage: An Update Review. Cell Mol Neurobiol. 2019;39(1):1–10. doi: 10.1007/s10571-018-0630-5
  21. Su B–H, Lin H–Y, Huang F–K, et al. Circulatory Management Focusing on Preventing Intraventricular Hemorrhage and Pulmonary Hemorrhage in Preterm Infants. Pediatr Neonatol. 2016;57(6):453–62. doi: 10.1016/j.pedneo.2016.01.001
  22. Garvey AA, Walsh BH, Inder TE. Pathogenesis and prevention of intraventricular hemorrhage. Semin Perinatol. 2022;46(5):151592. doi: 10.1016/j.semperi.2022.151592
  23. Ma S, Santhosh D, Kumar TP, et al. A Brain-Region-Specific Neural Pathway Regulating Germinal Matrix Angiogenesis. Dev Cell. 2017;41(4):366–81. doi: 10.1016/j.devcel.2017.04.014
  24. Nowak–Sliwinska P, Alitalo K, Allen E, et al. Consensus guidelines for the use and interpretation of angiogenesis assays. Angiogenesis. 2018;21(3):425–532. doi: 10.1007/s10456-018-9613-x
  25. Nadeem T, Bommareddy A, Bolarinwa L, et al. Pericyte dynamics in the mouse germinal matrix angiogenesis. FASEB J. 2022;36(6):e22339. doi: 10.1096/fj.202200120R
  26. Holst CB, Brøchner CB, Vitting–Seerup K, et al. Astrogliogenesis in human fetal brain: complex spatiotemporal immunoreactivity patterns of GFAP, S100, AQP4 and YKL-40. J Anat. 2019;235(3):590–615. doi: 10.1111/joa.12948
  27. Parodi A, Govaert P, Horsch S, et al. Cranial ultrasound findings in preterm germinal matrix haemorrhage, sequelae and outcome. Pediatr Res. 2020;(87, suppl 1):13–24. doi: 10.1038/s41390-020-0780-2
  28. Tortora D, Uccella S, Malova M, et al. The effects of mild germinal matrix-intraventricular haemorrhage on the developmental white matter microstructure of preterm neonates: a DTI study. Eur Radiol. 2018;28(3):1157–66. doi: 10.1007/s00330-017-5060-0
  29. Argyropoulou MI, Astrakas LG, Xydis VG, et al. Is Low-Grade Intraventricular Hemorrhage in Very Preterm Infants an Innocent Condition? Structural and Functional Evaluation of the Brain Reveals Regional Neurodevelopmental Abnormalities. AJNR Am J Neuroradiol. 2020;41(3):542–7. doi: 10.3174/ajnr.A6438
  30. Ley D, Romantsik O, Vallius S, et al. High Presence of Extracellular Hemoglobin in the Periventricular White Matter Following Preterm Intraventricular Hemorrhage. Front Physiol. 2020;11:27. doi: 10.3389/fphys.2020.00027
  31. Ballabh P, de Vries LS. White matter injury in infants with intraventricular haemorrhage: mechanisms and therapies. Nat Rev Neurol. 2021;17(4):199–214. doi: 10.1038/s41582-020-00447-8
  32. McAllister JP, Guerra MM, Ruiz LC, et al. Ventricular zone disruption in human neonates with intraventricular hemorrhage. J Neuropathol Exp Neurol. 2017;76(5):358–75. doi: 10.1093/jnen/nlx017
  33. Fejes Z, Pócsi M, Takai J, et al. Preterm Intraventricular Hemorrhage-Induced Inflammatory Response in Human Choroid Plexus Epithelial Cells. Int J Mol Sci. 2021;22(16):8648. doi: 10.3390/ijms22168648
  34. Romantsik O, Agyemang AA, Sveinsdóttir S, et al. The heme and radical scavenger α1-microglobulin (A1M) confers early protection of the immature brain following preterm intraventricular hemorrhage. J Neuroinflammation. 2019;16(1):122. doi: 10.1186/s12974-019-1486-4
  35. Atienza–Navarro I, Alves–Martinez P, Lubian–Lopez S, et al. Germinal Matrix-Intraventricular Hemorrhage of the Preterm Newborn and Preclinical Models: Inflammatory Considerations. Int J Mol Sci. 2020;21(21):8343. doi: 10.3390/ijms21218343

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2023 Eco-Vector


Media Registry Entry of the Federal Service for Supervision of Communications, Information Technology and Mass Communications (Roskomnadzor) PI No. FS77-76803 dated September 24, 2019.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies