Pathogenetic Aspects of Bronchial Asthma Phenotyping

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

INTRODUCTION: During a many-year history of its study, bronchial asthma (BA) has gone through the stages of numerous classifications. The introduction of specific biological therapy of BA permitted to speak about the phenotypes of the disease.

AIM: Presentation of the main pathophysiological mechanisms for isolation of endotypes and phenotypes of BA.

The diagnosis of phenotype of BA is based on the pathophysiological mechanisms of its development, which permit to evaluate the dynamics of the disease, make the diagnosis and predict the course of the disease. The most complicated aspect of BA phenotyping is severe forms of the disease characterized by a combination of different phenotypes. This impedes evaluation of specific pathogenetic mechanisms and administration of the optimal therapy for the patient.

CONCLUSION: The diagnosis of BA phenotypes permits to identify specific pathogenetic mechanisms and thereby personalize the treatment.

Full Text

Restricted Access

About the authors

Yuriy Yu. Byalovskiy

Ryazan State Medical University

Author for correspondence.
Email: b_uu@mail.ru
ORCID iD: 0000-0002-6769-8277

MD, Dr. Sci. (Med.), Professor

Russian Federation, Ryazan

Sergey I. Glotov

Ryazan State Medical University

Email: sergeyglot@mail.ru
ORCID iD: 0000-0002-4445-4480

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, Ryazan

Irina S. Rakitina

Ryazan State Medical University

Email: rakitina62@gmail.com
ORCID iD: 0000-0002-9406-1765

MD, Cand. Sci. (Med.), Associate Professor

Russian Federation, Ryazan

Anna N. Ermachkova

City Polyclinic No. 12

Email: anna.vyunova@bk.ru
ORCID iD: 0000-0002-2770-3414
Russian Federation, Ryazan

References

  1. Global Initiative for Asthma. Global Strategy for Asthma Management and Prevention. Updated 2023 [Internet]. Available at: https://ginasthma.org/wp-content/uploads/2023/05/GINA-2023- Full-Report-2023-WMS.pdf. Accessed: 2023 February 01.
  2. Chuchalin AG, Avdeev SN, Aisanov ZR, et al. Federal guidelines on diagnosis and treatment of bronchial asthma. Pulmonologiya. 2022;32(3):393–447. (In Russ). doi: 10.18093/0869-0189-2022-32-3-393-447
  3. The Global Asthma Report 2022. Int J Tuberc Lung Dis. 2022;26(Suppl 1): 1–104. doi: 10.5588/ijtld.22.1010
  4. Klinicheskiye rekomendatsii. Bronkhial’naya astma. 2021 [Internet]. Available at: https://cr.minzdrav.gov.ru/recomend/359_2. Accessed: 2023 February 01. (In Russ).
  5. Agache I, Akdis CA. Precision medicine and phenotypes, endotypes, genotypes, regiotypes, and theratypes of allergic diseases. J Clin Invest. 2019;129(4):1493–503. doi: 10.1172/jci124611
  6. Chung KF. Precision medicine in asthma: linking phenotypes to targeted treatments. Curr Opin Pulm Med. 2018;24(1):4–10. doi: 10.1097/mcp.0000000000000434
  7. Wenzel SE, Schwartz LB, Langmack EL, et al. Evidence that severe asthma can be divided pathologically into two inflammatory subtypes with distinct physiologic and clinical characteristics. Am J Respir Crit Care Med. 1999;160(3):1001–8. doi: 10.1164/ajrccm.160.3.9812110
  8. Shaw DE, Sousa AR, Fowler SJ, et al.; U-BIOPRED Study Group. Clinical and inflammatory characteristics of the European U-BIOPRED adult severe asthma cohort. Eur Respir J. 2016;46(5):1308–21. doi: 10.1183/13993003.00779-2015
  9. Loza MJ, Djukanovic R, Chung KF, et al. Validated and longitu- dinally stable asthma phenotypes based on cluster analysis of the ADEPT study. Respir Res. 2016;17(1):165. doi: 10.1186/s12931-016-0482-9
  10. Chung KF, Dixey P, Abubakar–Waziri H, et al. Characteristics, phenotypes, mechanisms and management of severe asthma. Chin Med J (Engl). 2022;135(10):1141–55. doi: 10.1097/cm9.0000000 000001990
  11. Guo Z, Wu J, Zhao J, et al. IL-33 promotes airway remodeling and is a marker of asthma disease severity. J Asthma. 2014;51(8):863–9. doi: 10.3109/02770903.2014.921196
  12. Al-Sajee D, Sehmi R, Hawke TJ, et al. The expression of IL-33 and TSLP and their receptors in asthmatic airways following inhaled allergen challenge. Am J Respir Crit Care Med. 2018;198(6):805–7. doi: 10.1164/rccm.201712-2468le
  13. Yang Q, Ge MQ, Kokalari B, et al. Group 2 innate lymphoid cells mediate ozone-induced airway inflammation and hyperrespon- siveness in mice. J Allergy Clin Immunol. 2016;137(2):571–8. doi: 10.1016/j.jaci.2015.06.037
  14. Chen R, Smith SG, Salter B, et al. Allergen-induced Increases in Sputum Levels of Group 2 Innate Lymphoid Cells in Subjects with Asthma. Am J Respir Crit Care Med. 2017;196(6):700–12. doi: 10.1164/rccm.201612-2427oc
  15. Hirose K, Iwata A, Tamachi T, et al. Allergic airway inflammation: key players beyond the Th2 cell pathway. Immunol Rev. 2017;278(1): 145–61. doi: 10.1111/imr.12540
  16. Syabbalo N. Biomarkers for Diagnosis and Management of Eosinophilic Asthma. Ann Clin Med Res. 2020;1(1):1003.
  17. Guo L, Huang Y, Chen X, et al. Innate immunological function of TH2 cells in vivo. Nat Immunol. 2015;16(10):1051–9. doi: 10.1038/ni.3244
  18. Persson C. Lysis of primed eosinophils in severe asthma. J Allergy Clin Immunol. 2013;132(6):1459–60. doi: 10.1016/j.jaci.2013.09.036
  19. Cayrol C, Girard J–P. Interleukin-33 (IL-33): A nuclear cytokine from the IL-1 family. Immunol Rev. 2018;281(1):154–68. doi: 10.1111/imr.12619
  20. Fanning LB, Boyce JA. Lipid mediators and allergic diseases. Ann Allergy Asthma Immunol. 2013;111(3):155–62. doi: 10.1016/j.anai. 2013.06.031
  21. Kim BS, Wang K, Siracusa MC, et al. Basophils promote innate lymphoid cell responses in inflamed skin. J Immunol. 2014;193(7): 3717–25. doi: 10.4049/jimmunol.1401307
  22. Samitas K, Delimpoura V, Zervas E, et al. Anti-IgE treatment, airway inflammation and remodelling in severe allergic asthma: current knowledge and future perspectives. Eur Respir Rev. 2015; 24(138):594–601. doi: 10.1183/16000617.00001715
  23. Fajt ML, Gelhaus SL, Freeman B, et al. Prostaglandin D(2) pathway upregulation: relation to asthma severity, control, and TH2 inflammation. J Allergy Clin Immunol. 2013;131(6):1504–12. doi: 10.1016/j.jaci.2013.01.035
  24. Buchheit KM, Cahill KN, Katz HR, et al. Thymic stromal lympho- poietin controls prostaglandin D2 generation in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2016; 137(5):1566–76.e5. doi: 10.1016/j.jaci.2015.10.020
  25. Kuruvilla ME, Lee FE–H, Lee GB. Understanding Asthma Phenotypes, Endotypes, and Mechanisms of Disease. Clin Rev Allergy Immunol. 2019;56(2):219–33. doi: 10.1007/s12016-018-8712-1
  26. James B, Milstien S, Spiegel S. ORMDL3 and allergic asthma: From physiology to pathology. J Allergy Clin Immunol. 2019;144(3):634–40. doi: 10.1016/j.jaci.2019.07.023
  27. Pua HH, Ansel KM. MicroRNA regulation of allergic inflammation and asthma. Curr Opin Immunol. 2015;36:101–8. doi: 10.1016/j.coi.2015.07.006
  28. Yu X, Wang M, Li L, et al. MicroRNAs in atopic dermatitis: A systematic review. J Cell Mol Med. 2020;24(11):5966–72. doi: 10.1111/jcmm.15208
  29. Lacedonia D, Palladino GP, Foschino–Barbaro MP, et al. Expression profiling of miRNA-145 and miRNA-338 in serum and sputum of patients with COPD, asthma, and asthma-COPD overlap syndrome phenotype. Int J Chron Obstruct Pulmon Dis. 2017;12:1811–7. doi: 10.2147/copd.s130616
  30. Boudewijn IM, Roffel MP, Vermeulen CJ, et al. A Novel Role for Bronchial MicroRNAs and Long Noncoding RNAs in Asthma Remission. Am J Respir Crit Care Med. 2020;202(4):614–8. doi: 10.1164/rccm.201908-1610le
  31. Li X, Ye S, Lu Y. Long non-coding RNA NEAT1 overexpression associates with increased exacerbation risk, severity, and inflammation, as well as decreased lung function through the interaction with microRNA-124 in asthma. J Clin Lab Anal. 2020;34(1):e23023. doi: 10.1002/jcla.23023
  32. Ramelli SC, Gerthoffer WT. MicroRNA Targets for Asthma Therapy. Adv Exp Med Biol. 2021;1303:89–105. doi: 10.1007/978-3-030- 63046-1_6
  33. Li W, Gao P, Zhi Y, et al. Periostin: Its role in asthma and its potential as a diagnostic or therapeutic target. Respir Res. 2015;16(1):57. doi: 10.1186/s12931-015-0218-2
  34. Bentley JK, Chen Q, Hong JY, et al. Periostin is required for maximal airways inflammation and hyperresponsiveness in mice. J Allergy Clin Immunol. 2014;134(6):1433–42. doi: 10.1016/j.jaci.2014.05.029
  35. Schleich FN, Manise M, Sele J, et al. Distribution of sputum cellular phenotype in a large asthma cohort: Predicting factors for eosinophilic vs neutrophilic inflammation. BMC Pulm Med. 2013;13:11. doi: 10.1186/1471-2466-13-11
  36. Zaihra T, Walsh CJ, Ahmed S, et al. Phenotyping of difficult asthma using longitudinal physiological and biomarker measurements reveals significant differences in stability between clusters. BMC Pulm Med. 2016;16(1):74. doi: 10.1186/s12890-016-0232-2
  37. Korevaar DA, Westerhof GA, Wang J, et al. Diagnostic accuracy of minimally invasive markers for detection of airway eosinophilia in asthma: A systematic review and meta-analysis. Lancet Respir Med. 2015;3(4):290–300. doi: 10.1016/s2213-2600(15)00050-8
  38. Plaza V, Crespo A, Giner J, et al. Inflammatory Asthma Phenotype Discrimination Using an Electronic Nose Breath Analyzer. J Investig Allergol Clin Immunol. 2015;25(6):431–7.
  39. Van der Sche MP, Palmay R, Cowan JO, et al. Predicting steroid responsiveness in patients with asthma using exhaled breath profiling. Clin Exp Allergy. 2013;43(11):1217–25. doi: 10.1111/cea.12147
  40. Pavord I, Bahmer T, Braido F, et al. Severe T2-high asthma in the biologics era: European experts’ opinion. Eur Respir Rev. 2019;28(152):190054. doi: 10.1183/16000617.0054-2019

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Molecular mechanisms of the pathogenesis of bronchial asthma in a group of patients with high Th2 level. Notes: IL — interleukin; Th2 cells — type 2 T helper cells; TSLP — thymic stromal lymphopoietin; DC — dendritic cells; IgE — immunoglobulin E; PGD2 — prostaglandins D2; CysLT — cysteinyl leukotrienes; ECP — eosinophilic cationic proteins; EDN — eosinophil-derived neurotoxin; EPx — eosinophil peroxidase; MBP — major alkaline protein.

Download (137KB)

Copyright (c) 2024 Eco-Vector


Media Registry Entry of the Federal Service for Supervision of Communications, Information Technology and Mass Communications (Roskomnadzor) PI No. FS77-76803 dated September 24, 2019.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies