Participation of ABCA1 transporter in development of chronic obstructive pulmonary disease

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Despite all achievements of the modern medicine, the problem of chronic obstructive pulmonary disease (COPD) does not lose its relevance. The current paradigm suggests a key role of macrophages in inflammation in COPD. Macrophages are known to be heterogeneous in their functions. This heterogeneity is determined by their immunometabolic profile and also by peculiarities of lipid homeostasis of cells.

Aim. To analyze the role of the ABCA1 transporter, a member of the ABC A subfamily, in the pathogenesis of COPD. The expression of ABCA1 in lung tissues is on the second place after the liver, which shows the important role of the carrier and of lipid homeostasis in the function of lungs. Analysis of the literature shows that participation of the transporter in inflammation consists in regulation of the content of cholesterol in the «lipid rafts» of the membranes, in phagocytosis and apoptosis.

Conclusion. Through regulation of the process of reverse transport of cholesterol in macrophages of lungs, ABCA1 can change their inflammatory response, which makes a significant contribution to the pathogenesis of COPD.

Full Text

Restricted Access

About the authors

Stanislav N. Kotlyarov

Ryazan State Medical University

Author for correspondence.
Email: SKMR1@yandex.ru

MD, PhD, Associate Professor, Head of the Department of Nursing

Russian Federation, Ryazan

Anna A. Kotlyarova

Ryazan State Medical University

Email: kaa.rz@yandex.ru
ORCID iD: 0000-0002-0676-7558
SPIN-code: 9353-0139
ResearcherId: K-7882-2018

PhD in Biological Science, Assistant of the Department of Pharmacology with Pharmacy Course of the Faculty of Additional Professional Education

Russian Federation, Ryazan

References

  1. Nizov AА, Ermachkova AN, Abrosimov VN, et al. Management of patients with COPD: role of evaluation of disease in real clinical practice (literature review). Nauka Molodykh (Eruditio Juvenium). 2018;6(3):429-38. (In Russ). doi: 10.23888/HMJ 201863429-438
  2. Chernykh IV, Shchulkin AV, Mylnikov PYu, et al. Functional activity of P-glycoprotein in blood-brain barrier during experimental parkinson’s syndrome. I.P. Pavlov Russian Medical Biological Herald. 2019; 27(2):150-59. (In Russ). doi: 10.23888/PAVLOVJ 2019272150-159
  3. Luciani MF, Denizot F, Savary S, et al. Cloning of 2 Novel Abc Transporters Mapping on Human-Chromosome-9. Genomics. 1994;21(1):150-9. doi:10. 1006/geno.1994.1237
  4. Kaminski WE, Piehler A, Wenzel JJ. ABC A-subfamily transporters: Structure, function and disease. Biochimica et Biophysica Acta. 2006; 1762(5):510-24. doi: 10.1016/j.bbadis.2006.01.011
  5. Kaminski WE, Orsó E, Diederich W, et al. Identification of a novel human sterol-sensitive ATP-binding cassette transporter (ABCA7). Biochemical and Biophysical Research Communications. 2000;273 (2):532-8. doi: 10.1006/bbrc.2000.2954
  6. Allikmets R, Singh N, Sun H, et al. A photoreceptor cell-specific ATP-binding transporter gene (ABCR) is mutated in recessive Stargardt macular dystrophy. Nature Genetics. 1997;15(3):236-46. doi:10.1038/ ng0397-236
  7. Allikmets R, Shroyer NF, Singh N, et al. Mutation of the Stargardt disease gene (ABCR) in age-related macular degeneration. Science. 1997;277 (5333): 1805-7. doi: 10.1126/science.277.5333.1805
  8. Orsó E, Broccardo C, Kaminski WE, et al. Transport of lipids from Golgi to plasma membrane is defective in Tangier disease patients and Abc1-deficient mice. Nature Genetics. 2000;24(2):192-6. doi: 10.1038/72869
  9. Neufeld EB, O'Brien K, Walts AD, et al. Cellular Localization and Trafficking of the Human ABCA1 Transporter. Biology. 2014;3(4):781-800. doi:10. 3390/biology3040781
  10. Tanaka AR, Abe-Dohmae S, Ohnishi T, et al. Effects of mutations of ABCA1 in the first extracellular domain on subcellular trafficking and ATP binding/hydrolysis. Journal of Biological Chemistry. 2003;278 (10):8815-9. doi: 10.1074/jbc.M206885200
  11. Lawn RM, Wade DP, Garvin MR, et al. The Tangier disease gene product ABC1 controls the cellular apolipoprotein-mediated lipid removal pathway. The Journal of Clinical Investigation. 1999;104(8):R25-31. doi: 10.1172/JCI8119
  12. Vaughan AM, Oram JF. ABCA1 redistributes membrane cholesterol independent of apolipoprotein interactions. Journal of Lipid Research. 2003;44(7): 1373-80. doi: 10.1194/jlr.M300078-JLR200
  13. Chai AB, Ammit AJ, Gelissen IC. Examining the role of ABC lipid transportersin pulmonary lipid homeostasis and inflammation. Respiratory Research. 2017;18(1):41. doi: 10.1186/s12931-017-0526-9
  14. Cardelli J. Phagocytosis and macropinocytosis in Dictyostelium: phosphoinositide-based processes, biochemically distinct. Traffic. 2001;2(5):311-20. doi: 10.1034/j.1600-0854.2001.002005311.x
  15. Sillo A, Bloomfield G, Balest A, et al. Genome-wide transcriptional changes induced by phagocytosis or growth on bacteria in Dictyostelium. BMC Genomics. 2008;9:291. doi: 10.1186/1471-2164-9-291
  16. Botelho RJ, Scott CC, Grinstein S. Phosphoinositide involvement in phagocytosis and phagosome maturation. Current Topics in Microbiology and Immunology. 2004;282:1-30. doi: 10.1007/978-3-642-18805-3_1
  17. Desjardins M, Houde M, Gagnon E. Phagocytosis: the convoluted way from nutrition to adaptive immunity. Immunological Reviews. 2005;207:158-65. doi: 10.1111/j.0105-2896.2005.00319.x
  18. Anjard C, Loomis WF. Evolutionary analyses of ABC transporters of Dictyostelium discoideum. Eukaryotic Cell. 2002;1:643. doi: 10.1128/EC.1.4. 643-652.2002
  19. Nakahashi-Oda C, Tahara-Hanaoka S, Honda S, et al. Identification of phosphatidylserine as a ligand for the CD300a immunoreceptor. Biochemical and Biophysical Research Communications. 2012;417 (1):646-50. doi: 10.1016/j.bbrc.2011.12.025
  20. Arienti S, Barth ND, Dorward DA, et al. Regulation of Apoptotic Cell Clearance During Resolution of Inflammation. Frontiers in Pharmacology. 2019; 10:1-12. doi: 10.3389/fphar.2019.00891
  21. Poon IK, Lucas CD, Rossi AG, et al. Apoptotic cell clearance: basic biology and therapeutic potential. Nature Reviews Immunology. 2014;14(3):166-80. doi: 10.1038/nri3607
  22. Fond AM, Ravichandran KS. Clearance of Dying Cells by Phagocytes: Mechanisms and Implications for Disease Pathogenesis. Advances in Experi-mental Medicine and Biology. 2016;930:25-49. doi:10.1007/ 978-3-319-39406-0_2
  23. Segawa K, Nagata S. An Apoptotic ‘Eat Me’ Signal: Phosphatidylserine Exposure. Trends in Cell Biology. 2015;25(11):639-50. doi: 10.1016/j.tcb. 2015.08.003
  24. Hamon Y, Broccardo C, Chambenoit O, et al. ABC1 promotes engulfment of apoptotic cells and transbilayer redistribution of phosphatidylserine. Nature Cell Biology. 2000;2(7):399-406. doi:10. 1038/35017029
  25. Albrecht C, McVey JH, Elliott JI, et al. A novel missense mutation in ABCA1 results in altered protein trafficking and reduced phosphatidylserine translocation in a patient with Scott syndrome. Blood. 2005;106(2):542-9. doi: 10.1182/blood-2004-05-2056
  26. Luciani MF, Chimini G. The ATP binding cassette transporter ABC1, is required for the engulfment of corpses generated by apoptotic cell death. The EMBO Journal. 1996;15(2):226-35.
  27. Wu YC, Horvitz HR. The elegans cell corpse engulfment gene ced-7 encodes a protein similar to ABC transporters. Cell. 1998;93(6):951-60. doi:10.1016/ s0092-8674(00)81201-5
  28. Santoso CS, Meehan TL, Peterson JS, et al. The ABC Transporter Eato Promotes Cell Clearance in the Drosophila melanogaster Ovary. Genes, Genomes, Genetics. 2018;8(3):833-43. doi: 10.1534/g3.117.300427
  29. Drobnik W, Lindenthal B, Lieser B, et al. ATP-binding cassette transporter A1 (ABCA1) affects total body sterol metabolism. Gastroenterology. 2001; 120(5):1203-11. doi: 10.1053/gast.2001.23250
  30. Van der Deen M, de Vries EG, Timens W, et al. ATP-binding cassette (ABC) transporters in normal and pathological lung. Respiratory Research. 2005; 6:59. doi: 10.1186/1465-9921-6-59
  31. McNeish J, Aiello RJ, Guyot D, et al. High density lipoprotein deficiency and foam cell accumulation in mice with targeted disruption of ATP-binding cassette transporter-1. Proceedings of the National Academy of Sciences of the United States of America. 2000;97(8):4245-50. doi: 10.1073/pnas.97.8.4245
  32. Bates SR, Tao JQ, Collins HL, et al. Pulmonary abnormalities due to ABCA1 deficiency in mice. American Journal of Physiology. Lung Cellular and Molecular Physiology. 2005;289(6):980-9. doi:10. 1152/ajplung.00234.2005
  33. Wang W, Xu H, Shi Y, et al. Genetic deletion of apolipoprotein A-I increases airway hyperrespon-siveness, inflammation, and collagen deposition in the lung. Journal of Lipid Research. 2010;51(9): 2560-70. doi: 10.1194/jlr.M004549
  34. Wang N, Lan D, Gerbod-Giannone M, et al. ATP-binding cassette transporter A7 (ABCA7) binds apolipoprotein A-I and mediates cellular phospholipid but not cholesterol efflux. The Journal of Biological Chemistry. 2003;278(44):42906-12. doi:10. 1074/jbc. M307831200
  35. Wright JR, Youmans DC. Degradation of surfactant lipids and surfactant protein A by alveolar macrophages in vitro. The American Journal of Physio-logy. 1995;268(5 Pt 1):L772-80. doi:10.1152/ ajplung.1995.268.5.L772
  36. Wright JR. Immunomodulatory functions of surfactant. Physiological Reviews. 1997;77(4):931-62. doi: 10.1152/physrev.1997.77.4.931
  37. Dobbs LG. Pulmonary surfactant. Annual Review of Medicine. 1989;40:431-46. doi: 10.1146/annurev.me. 40.020189.002243
  38. Yvan-Charvet L, Pagler T, Gautier EL, et al. ATP-binding cassette transporters and HDL suppress hematopoietic stem cell proliferation. Science. 2010; 328(5986):1689-93. doi: 10.1126/science.1189731
  39. Wang Y, Oram JF. Unsaturated fatty acids phosphorylate and destabilize ABCA1 through a phospholipase D2 pathway. The Journal of Biological Chemistry. 2005;280(43):35896-903. doi:10.1074/ jbc.M506210200
  40. Phillips MC. Is ABCA1 a lipid transfer protein? Journal of Lipid Research. 2018;59(5):749-63. doi: 10.1194/jlr.R082313
  41. Lee-Rueckert M, Lappalainen J, Leinonen H, et al. Acidic extracellular environments strongly impair ABCA1-mediated cholesterol efflux from human macrophage foam cells. Arteriosclerosis, Thrombosis, and Vascular Biology. 2010;30(9):1766-72. doi: 10.1161/ATVBAHA.110.211276

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. АВСА1 expression in lungs [13]

Download (116KB)

Copyright (c) 2020 Eco-Vector


Media Registry Entry of the Federal Service for Supervision of Communications, Information Technology and Mass Communications (Roskomnadzor) PI No. FS77-76803 dated September 24, 2019.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies