Nitric oxide and regulators of its synthesis in chronic obstructive pulmonary disease

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

ABSTRACT

The clinical picture and long-term prognosis of chronic obstructive pulmonary disease (COPD) largely depend on comorbid conditions, thereby prompting a relevant search for predictive and preventive methods in the pathogenesis of the disease. Cardiovascular diseases are highly prevalent among patients with COPD. Cardiovascular risks in patients with COPD are associated with changes in the activity of vasoactive mediators, with nitric oxide (NO) being the most important. The important role of nitric oxide in the body prompts it being studied as a biomarker of many diseases; however, its short half-life and rapid clearance prevent its direct assessment in the blood. In the body, nitric oxide is formed from L-arginine with the help of enzymes of NO-synthase group. NO oxide synthesis depends on the concentration of L-arginine, arginase and asymmetric dimethylarginine (inhibitory effect on NO-synthase). The presented literature review highlights modern views on the importance of nitric oxide and regulators of its synthesis in the pathogenesis of chronic obstructive pulmonary disease. It also indicates their role in the formation of comorbid conditions, and highlights processes of NO formation in the body.

CONCLUSION: The components of the nitric oxide system (nitric oxide metabolites, L-arginine, arginase, dimethylarginine dimethylaminohydrolase, asymmetric and symmetric dimethylarginine) can be considered as potential biomarkers of COPD, especially in conditions of cardiovascular comorbidity. Further studies on the nitric oxide system are recommended for assessing the prognosis of the course of diseases and the effectiveness of the current therapy.

Full Text

Restricted Access

About the authors

Oleg M. Uryas'yev

Ryazan State Medical University

Email: Uryasev08@yandex.ru
ORCID iD: 0000-0001-8693-4696
SPIN-code: 7903-4609
Scopus Author ID: 57195313767
ResearcherId: S-6270-2016

PhD, Dozent, Head of Dept. of Faculty Therapy

Russian Federation, Ryazan

Anton Shakhanov

Ryazan State Medical University

Email: shakhanovav@gmail.com
ORCID iD: 0000-0002-5706-9418
SPIN-code: 6378-4031
Scopus Author ID: 57203685353
ResearcherId: W-2406-2017

MD, Cand. Sci. (Med.)

Russian Federation, Ryazan

Zharkynai K. Kanatbekova

Рязанский государственный медицинский университет им. акад. И.П. Павлова

Author for correspondence.
Email: janya_kanatbekova@mail.ru
ORCID iD: 0000-0003-3314-760X
Russian Federation, 390026, г. Рязань, ул. Высоковольтная, д. 9

References

  1. Singh D, Agusti A, Anzueto A, et al. Global Strategy for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease: the GOLD science committee report 2019. The European Respiratory Journal. 2019;53(5):1900164. doi: 10.1183/13993003.00164-2019
  2. Urban MH, Eickhoff P, Funk G-C, et al. Increased brachial intima-media thickness is associated with circulating levels of asymmetric dimethylarginine in patients with COPD. International Journal of Chronic Obstructive Pulmonary Disease. 2017;12:169–176. doi: 10.2147/COPD.S118596
  3. Csoma B, Bikov A, Nagy L, et al. Dysregulation of the endothelial nitric oxide pathway is associated with airway inflammation in COPD. Respiratory Research. 2019;20(1):156. doi: 10.1186/s12931-019-1133-8
  4. Uryasyev OM, Nikitina IN, Shakhanov AV, et al. Comprehensive assessment of endothelial dysfunction using compression oscillometry and determination of the level of asymmetric dimethyl arginine in patients with bronchial asthma. Nauka Molodykh (Eruditio Juvenium). 2020;8(3):363–9. (In Russ). doi: 10.23888/HMJ202083363-369
  5. Uryas’ev OM, Shakhanov AV. Role of nitric oxide synthases polymorphism in the development of comorbidity of bronchial asthma and hypertension. Kazan Medical Journal. 2017;98(2):226–32. (In Russ). doi: 10.17750/KMJ2017-226
  6. Ruzsics I, Nagy L, Keki S, et al. L-arginine Pathway in COPD Patients with Acute Exacerbation: A New Potential Biomarker. COPD. 2016;13(2):139–45. doi: 10.3109/15412555.2015.1045973
  7. Shakhanov AV, Nikiforov AA, Uryasev OM. Polymorphism of nitric oxide synthase genes (NOS1 84G/A and NOS3 786C/T) in patients with bronchial asthma and essential hypertension. I.P. Pavlov Russian Medical Biological Herald. 2017;25(3):378–90. (In Russ). doi: 10.23888/PAVLOVJ20173378-390
  8. Fleming I Molecular mechanisms underlying the activation of eNOS. Pflügers Archiv - European Journal of Physiology. 2010;459(6):793–806. doi: 10.1007/s00424-009-0767-7
  9. Chen Y, Xu X, Sheng M, et al. PRMT-1 and DDAHs-induced ADMA upregulation is involved in ROS- and RAS-mediated diabetic retinopathy. Experimental Eye Research. 2009;89(6):1028–34. doi: 10.1016/j.exer.2009. 09.004
  10. Kharitonov SA, Lubec G, Lubec B, et al. L-arginine increases exhaled nitric oxide in normal human subjects. Clinical Science (London, England : 1979). 1995;88(2):135–9. doi: 10.1042/cs0880135
  11. Morris CR, Poljakovic M, Lavrisha L, et al. Decreased arginine bioavailability and increased serum arginase activity in asthma. American Journal of Respiratory and Critical Care Medicine. 2004;170(2):148–53. doi: 10.1164/rccm.200309-1304OC
  12. Bratt JM, Zeki AA, Last JA, et al. Competitive metabolism of L-arginine: Arginase as a therapeutic target in asthma. Journal of Biomedical Research. 2011;25(5):299–308. doi: 10.1016/S1674-8301(11)60041-9
  13. Mangoni AA, Rodionov RN, McEvoy M, et al. New horizons in arginine metabolism, ageing and chronic disease states. Age and Ageing. 2019;48(6):776–782. doi: 10.1093/ageing/afz083
  14. Bergeron C, Boulet LP, Page N, et al. Influence of cigarette smoke on the arginine pathway in asthmatic airways: increased expression of arginase I. The Journal of Allergy and Clinical Immunology. 2007;119(2):391–7. doi: 10.1016/j.jaci.2006.10.030
  15. Xu W, Comhair SAA, Janocha AJ, et al. Arginine metabolic endotypes related to asthma severity. PloS One. 2017;12(8):e0183066. doi: 10.1371/journal.pone.0183066
  16. Scrimini S, Pons J, Agustí A, et al. Differential effects of smoking and COPD upon circulating myeloid derived suppressor cells. Respiratory Medicine. 2013;107(12):1895–903. doi: 10.1016/j.rmed.2013.08.002
  17. Guzmán-Grenfell A, Nieto-Velázquez N, Torres-Ramos Y et al. Increased platelet and erythrocyte arginase activity in chronic obstructive pulmonary disease associated with tobacco or wood smoke exposure. Journal of Investigative Medicine. 2011;59(3):587–92. doi: 10.2310/JIM.0b013e31820bf475
  18. Hodge S, Matthews G, Mukaro V, et al. Cigarette smoke-induced changes to alveolar macrophage phenotype and function are improved by treatment with procysteine. American Journal of Respiratory Cell and Molecular Biology. 2011;44(5):673–81. doi: 10.1165/rcmb.2009-0459OC
  19. Pera T, Zuidhof AB, Smit M, et al. Arginase inhibition prevents inflammation and remodeling in a guinea pig model of chronic obstructive pulmonary disease. The Journal of Pharmacology and Experimental Therapeutics. 2014;349(2):229–38. doi: 10.1124/jpet.113.210138
  20. Scott JA, Gauvreau GM, Grasemann H. Asymmetric dimethylarginine and asthma. European Respiratory Journal. 2014;43(2):647–8. doi: 10.1183/09031936.00080313
  21. Maarsingh H, Zaagsma J, Meurs H. Arginase: A key enzyme in the pathophysiology of allergic asthma opening novel therapeutic perspectives. British Journal of Pharmacology. 2009;158(3):652–64. doi: 10.1111/j.1476-5381.2009.00374.x
  22. Maarsingh H, Bossenga BE, Bos IST, et al. L-arginine deficiency causes airway hyperresponsiveness after the late asthmatic reaction. European Respiratory Journal. 2009;34(1):191–9. doi: 10.1183/09031936.00105408
  23. Jung C, Quitter F, Lichtenauer M, et al. Increased arginase levels contribute to impaired perfusion after cardiopulmonary resuscitation. European Journal of Clinical Investigation. 2014;44(10):965–71. doi: 10.1111/eci.12330
  24. Nara A, Nagai H, Shintani–Ishida K, et al. Pulmonary arterial hypertension in rats due to age-related arginase activation in intermittent hypoxia. American Journal of Respiratory Cell and Molecular Biology. 2015;53(2):184–92. doi: 10.1165/rcmb.2014-0163OC
  25. Rabe KF, Watz H Chronic obstructive pulmonary disease. The Lancet. 2017;389(10082):1931–40. doi: 10.1016/S0140-6736(17)31222-9
  26. Wang X-P, Zhang W, Liu X-Q, et al. Arginase I enhances atherosclerotic plaque stabilization by inhibiting inflammation and promoting smooth muscle cell proliferation. European Heart Journal. 2014;35(14):911–9. doi: 10.1093/eurheartj/eht329
  27. Bitner BR, Brink DC, Mathew LC, et al. Impact of arginase II on CBF in experimental cortical impact injury in mice using MRI. Journal of Cerebral Blood Flow and Metabolism. 2010;30(6):1105–9. doi: 10.1038/jcbfm.2010.47
  28. Vallance P, Leiper J Cardiovascular biology of the asymmetric dimethylarginine:dimethylarginine dimethylaminohydrolase pathway. Arteriosclerosis, Thrombosis, and Vascular Biology. 2004;24(6):1023–30. doi: 10.1161/01.ATV.0000128897.54893.26
  29. Vögeli A, Ottiger M, Meier MA, et al. Asymmetric Dimethylarginine Predicts Long-Term Outcome in Patients with Acute Exacerbation of Chronic Obstructive Pulmonary Disease. Lung. 2017;195(6):717–27. doi: 10.1007/s00408-017-0047-9
  30. Tajti G, Gesztelyi R, Pak K, et al. Positive correlation of airway resistance and serum asymmetric dimethylarginine level in copd patients with systemic markers of low-grade inflammation. International Journal of Chronic Obstructive Pulmonary Disease. 2017;12:873–84. doi: 10.2147/COPD.S127373
  31. Carraro S, Giordano G, Piacentini G, et al. Asymmetric dimethylarginine in exhaled breath condensate and serum of children with asthma. Chest. 2013;144(2):405–10. doi: 10.1378/chest.12-2379
  32. Zinellu A, Fois AG, Mangoni AA, et al. Systemic concentrations of asymmetric dimethylarginine (ADMA) in chronic obstructive pulmonary disease (COPD): state of the art. Amino Acids. 2018;50(9):1169–76. doi: 10.1007/s00726-018-2606-7
  33. Hsu C-N, Lu P-C, Lo M-H, et al. The Association between Nitric Oxide Pathway, Blood Pressure Abnormalities, and Cardiovascular Risk Profile in Pediatric Chronic Kidney Disease. International Journal of Molecular Sciences. 2019;20(21):5301. doi: 10.3390/ijms20215301
  34. Scott JA, North ML, Rafii M, et al. Asymmetric dimethylarginine is increased in asthma. American Journal of Respiratory and Critical Care Medicine. 2011;184(7):779–85. doi: 10.1164/rccm.201011-1810OC
  35. Scott JA, Grasemann H. Asymmetric dimethylarginine: a disease marker for asthma? Chest. 2013;144(2):367–8. doi: 10.1378/chest.13-0480
  36. Winnica DE, Scott JA, Grasemann H, et al. Chapter 19. Asymmetric-Dimethylarginine. In: Nitric Oxide. Biology and Pathobiology. 3rd ed. Elsiver; 2017. P. 247–54. doi: 10.1016/B978-0-12-804273-1.00019-3
  37. Palm F, Onozato ML, Luo Z, et al. Dimethylarginine dimethylaminohydrolase (DDAH): expression, regulation, and function in the cardiovascular and renal systems. American Journal of Physiology Heart and Circulatory Physiology. 2007;293(6):H3227–45. doi: 10.1152/ajpheart.00998.2007
  38. Antoniades C, Demosthenous M, Tousoulis D, et al. Role of asymmetrical dimethylarginine in inflammation-induced endothelial dysfunction in human atherosclerosis. Hypertension. 2011;58(1):93–8. doi: 10.1161/HYPERTENSIONAHA.110.168245
  39. Avci B, Alacam H, Dilek A, et al. Effects of asymmetric dimethylarginine on inflammatory cytokines (TNF-α, IL-6 and IL-10) in rats. Toxicology and Industrial Health. 2015;31(3):268–73. doi: 10.1177/0748233712472524

Supplementary files

Supplementary Files
Action
1. JATS XML

Copyright (c) 2021 Uryasev O., Shakhanov A., Kanatbekova Z.


Media Registry Entry of the Federal Service for Supervision of Communications, Information Technology and Mass Communications (Roskomnadzor) PI No. FS77-76803 dated September 24, 2019.



This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies