Метаболические аспекты фармакологической депривации периферических никотинчувствительных холинергических синапсов

Обложка


Цитировать

Полный текст

Аннотация

Исследовали содержание АТФ, АДФ, АМФ и активность изоферментной системы ЛДГ в краниальном шейном симпатическом ганглии (КШСГ) кроликов при частичной и полной депривации Н-холинергических (Н-ХЕ) синапсов. Динамика активности ЛДГ и содержания макроэргов при депривации Н-ХЕ синапсов указывает на то, что блокада Н-ХЕ синапсов приводит в симпатическом ганглии к значительному энергетическому дефициту и нарушению энергетического гомеостаза. Предполагается, что изменения в энергетическом обмене являются основной причиной гипофункции КШСГ наблюдаемой при фармакологической блокаде антагонистами Н-ХЕ синапсов.

Полный текст

Никотинчувствительные холинерги-ческие (Н-ХЕ) синапсы играют заметную роль в регуляции висцеральных функций и когнитивной деятельности мозга [7, 9, 19]. Нарушение нормальной функции Н-ХЕ синапсов является причиной многих патологических состояний [16, 17]. В клинической практике для коррекции функций Н-ХЕ синапсов расположенных в разных отделах нервной системы широко применяются и продолжают интенсивно апробироваться в качестве агонистов и антагонистов Н-холиноре-цепторов различные фармакологические средства [7, 12, 13]. В связи с научно-практической значимостью проблемы клинико-физиологические вопросы фармакологической модуляции Н-ХЕ синаптической передачи вызывающей определенный терапевтический эффект при блокировании периферических синапсов в симпатических ганглиях находятся в сфере внимания исследователей и интенсивно изучаются [7, 16, 10, 20]. Напротив, другой аспект проблемы - изучение метаболических сдвигов в симпатических ганглиях сопровождающих депривацию холинергических синапсов остается не разработанной проблемой. Вместе с тем исследования в этом направлении представляют вполне понятное значение в свете получения детальных представлений о молекулярных механизмах лежащих в основе фармакологической модуляции Н-ХЕ синаптической передачи и перспектив направленного влияния антагонистов на Н-ХЕ синапсы, находящиеся в ганглиях периферической нервной системы. Цель настоящей работы - в условиях частичной и полной фармакологической депривации Н-ХЕ синаптической передачи в краниальном шейном симпатическом ганглии (КШСГ) изучить энергетический обмен в КШСГ. Материалы и методы Определяли в КШСГ половозрелых самцов кроликов породы шиншилла возраста 8 месяцев содержание АТФ, АДФ, АМФ и активность изоферментов лактат-дегидрогеназы (ЛДГ), которые являются адекватными показателями биоэнергети 37 Российский медико-биологический вестник имени академика И.П. Павлова, №3, 2015 г. ческих процессов [8, 15, 14]. В качестве антагониста Н-ХЕ синапсов использовали ганглиоблокатор димеколин, избирательно прерывающий никотинчувствитель-ную холинергическую передачу в симпатических ганглиях [6, 7]. Энергетические изменения в ганглии изучали как при частичной, так и при полной депривации синапсов путем подкожного введения препарата в дозах - соответственно 10 и 50 мг/кг, руководствуясь установленной для кроликов фармакодинамикой препарата [6]. После введения указанных доз препарата материал брали через 1 час, когда проявление блокирующего действия выражено максимально [6]. При работе с экспериментальными животными и при выведении животных из эксперимента руководствовались приказами Минздрава СССР № 577 от 12.08.1977 г. и Минздравсоцразвития РФ от 23 августа 2010 г. № 708н. «Об утверждении Правил лабораторной практики». Разделение изоферментов ЛДГ в гомогенатах КШСГ осуществляли с помощью диск-электрофореза в полиакриламидном геле [5]. В гомогенатах КШСГ определяли активность изоферментов ЛДГ в относительных единицах методом фотографической фотометрии [1]. Элек-трофореграммы в максимуме поглощения формазана (Х=569 нм) фотографировали на аэрофотопленку в условиях, при которых соблюдалась пропорциональность между интегральной оптической плотностью каждой полосы изофермента на электрофореграмме и ее плотностью по чернения на негативном изображении фотопленки. Полученные таким образом изображения изоферментных полос ден-ситометрировали на микрофотометре ИФО-451. В контроле использовано 5 животных. Число экспериментальных групп животных составляло - при частичной депривации синапсов 4 животных, при полной - 5 особей. Анализировали по 4 пробы от каждого животного. Содержание в ганглии АТФ, АДФ, АМФ определяли с помощью метода тонкослойной хроматографии на силуфоловых пластинках, с последующим количественным спектрофотометрическим определением каждого из аденилатных макроэргов в УФ диапазоне (260 нм) [3]. В контроле и в каждой из экспериментальных групп использовано по 3 животных. Анализировали по 4 пробы от каждого животного. Статистическую обработку полученных результатов проводили с помощью компьютерных программ “STATISTICA 6.1”. Достоверность статистических различий оценивали по непараметрическому критерию U Вилкоксона - Манна - Уитни. Статистические различия показателей оценивали при уровне значимости p < 0,05. Результаты и их обсуждение В изучаемом ганглии синаптическая блокада никотиновых холинергических синапсов полностью изменяет изоферментный профиль ЛДГ вызывая последовательное, по мере усиления блокирующего воздействия, уменьшение числа изоферментов ЛДГ (табл. 1). Таблица 1 Изменения изоферментного спектра ЛДГ при частичной и полной депривации синапсов Серии опыта Относительная активность каждого изофермента в % к суммарной активности всех изоформ ЛДГ-1 ЛДГ-2 ЛДГ-3 ЛДГ-4 ЛДГ-5 Контрольная 30 25 21 13 10 Блокада частичная 46 40 14 - - Блокада полная 55 45 - - - Так если в норме в состав ЛДГ ЛДГ-5, то при частичной депривации симпатического ганглия входят все 5 синапсов в спектре ЛДГ остаются только изоформ: ЛДГ-1, ЛДГ-2, ЛДГ-3, ЛДГ-4, и анодные фракции - ЛДГ-1, ЛДГ-2 и 38 Российский медико-биологический вестник имени академика И.П. Павлова, №3, 2015 г. гибридная изоформа - ЛДГ-3. При этом весьма существенно, более чем в 2 раза, активность всех этих трех изоформ снижается (табл. 2). Таблица 2 Динамика снижения относительно контроля (в %) активности ЛДГ и каждого из изоферментов, остающихся в спектре после при частичной и полной депривации синапсов Серии опыта ЛДГ общая ЛДГ-1 ЛДГ-2 ЛДГ-3 Частичная блокада 81 71 70 87 Полная блокада 91 84 84 - Примечание: здесь и в табл. 3 все изменения относительно контроля статистически значимы (U критерий, р< 0,05) При полной депривации синапсов эти изменения еще более существенны и в изоферментном спектре ЛДГ остаются только катодные фракции - ЛДГ -1 и ЛДГ -2 (табл.1), активность которых при этом еще более снижается (р < 0,05) и составляет всего 16% от их активности в контроле (табл.2). Следствием описанных выше изменений является и значительное снижение общей активности ЛДГ - при частичной депривации синапсов активность общей ЛДГ составляет всего 19% (р < 0,05), а при полной - лишь 9% (р < 0,05) от активности этого фермента в контроле (табл. 2). Результаты определения содержания макроэргов при депривации выявляют ана-ло-гичные тенденции, что и при измерении активности ЛДГ - существенное снижение содержания всех аденилатных макроэргов (табл. 3). При частичной депривации синапсов содержание АТФ уменьшается на 53%, при полной - на 93%, для АДФ уровень снижения содержания составил соответственно 33% и 65% (р < 0,05). Уменьшение содержания АМФ в большей мере отмечается при частичной депривации - на 80%, при полной депривации содержание АМФ уменьшается на 56% (р < 0,05). В целом суммарное содержание макроэргов при частичной депривации синапсов уменьшается в ганглии почти в 2, а при полной - в 4,5 раза относительно контрольных показателей (табл. 3). Таблица 3 Динамика снижения относительно контроля (в %) содержания макроэргов при частичной и полной депривации синапсов Серии опыта Ха АТР АДФ АМФ Частичная блокада 49 53 33 80 Полная блокада 78,5 93 65 57 Примечание: ЕА - суммарное количество аденилатных макроэргов Таким образом, Н-ХЕ синаптическая блокада, как частичная, так и полная, в равной мере вызывает в симпатическом ганглии существенные изменения показателей, которые отражают уровень биоэнергетического обмена [8, 15, 14]. Значительно падает, вместе с исчезновение целого ряда изоферментов активность ферментативной системы ЛДГ и весьма существенно уменьшается содержание аденилатных макроэргов. Следует при этом подчеркнуть, что эти изменения прямо связаны со степенью депривации синапсов и при полной их депривации участие ЛДГ и аденилатных макроэргов в энергетических, равно как и в других метаболических процессах КШСГ если не полностью исключается, то становится, по крайней мере, минимальным. С учетом того, что ключевая роль в регуляции 39 Российский медико-биологический вестник имени академика И.П. Павлова, №3, 2015 г. клеточного энергетического обмена принадлежит ферментной системе ЛДГ, которая осуществляет регуляцию суб-страт-ного обеспечения энергетических процессов [2, 15], и аденилатным макроэргам, уровень содержания которых характеризует энергетический статус и общую интеграцию биохимических процессов [14], можно заключить, что синаптическая блокада никотиновых холинергических синапсов вызывает нарушение энергетического гомеостаза и приводит к существенному энергетическому дефициту. Именно энергетический дефицит прежде всего и объясняет основной эффект синаптической холинергической блокады приводящий, как известно [4, 7] к гипофункции ганглиев. Действительно Н-ХЕ синапсы, ионо-тропные по своей природе, выполняют важную роль в поддержании в нервной ткани гомеостаза катионных ионов, в первую очередь Ca2+ [7, 16], в связи, с чем депривация вышеозначенных синапсов вызывает нарушение гомеостаза катионных ионов, Ca2+, возможно и других катионов. Принимая во внимание современные данные о регуляторном влиянии Ca2+ на энергетический обмен в нервной ткани [11, 22] и о высокой чувствительности аденилатов [18] и изоферментов ЛДГ [21] к ионному составу окружающей среды, именно изменение ионотропного эффекта селективного потока катионов Na+, K+ и Ca 2+, при депривации является основной причиной редукции ферментативной системы ЛДГ и дефицита аденилатных макроэргов. Заключение Результаты настоящего исследования указывают на то, что фармакологическая депривация периферических нико-тинчувствительных холинергических синапсов приводит к существенному энергетическому дефициту в краниальном шейном симпатическом ганглии. С большей степенью вероятности можно утверждать, что нарушение энергетического гомеостаза является основной причиной гипофункции симпатических ганглиев при действии антагонистов на никотин-чувствительные холинорецепторы.
×

Список литературы

  1. Агроскин Л.С. Цитофотометрия / Л.С. Агроскин, Г.В. Папаян. - Л.: Наука, 1977. - 295 c.
  2. Зимин Ю.В. Надмолекулярная регуляция активности некоторых оксидоредуктаз клетки в норме и патологии / Ю.В. Зимин, С.П. Сяткин, Т.Т. Березов // Вопр. мед. химии. - 2001. -Т. 47, № 3. - С. 279-287.
  3. Определение адениловых нуклеотидов в цельной крови / В.Т. Самохин [и др.] // Ветеринария. - 1981. - № 7. - C. 65-66.
  4. Особенности строения ионного канала нейронального никотинового холинорецептора, установленные на основании изучения связи структуры и активности в ряду ганглиоблокаторов / Н.Б. Бровцына [и др.] // Биол. мембраны. - 1996. - Т. 13, № 1. - С. 57-70.
  5. Панавене Д.П. К методике разделения изоферментов лактатдегидрогеназы на полиакриламидном геле / Д.П. Панавене // Лаб. дело. - 1974. - № 9. - С. 542-544.
  6. Першин Г.И. Димеколин / Г.И. Першин // Новые лекарственные средства / под ред. Г.И. Першина. - М.: Медицина, 1966. - Вып. 10. - С. 72-100.
  7. Скок В.И. Нейрональные холинорецепторы / В.И. Скок, А.А. Селянко, В.А. Деркач. - М.: Наука, 1987. - 343 с.
  8. Хватова Е.М. Нуклеотиды мозга / Е.М. Хватова, А.Н. Сидоркина, Г.В. Миронова. - М.: Наука, 1987. - 208 с.
  9. Anglade P. Historical landmarks in the histochemistry of the cholinergic synapse: Perspectives for future researches / P. Anglade, Y. Larabi-Godinot // Biomed Res. - 2010. - Vol. 31, № 1. - P. 1-12.
  10. Becker D.E. Basic and clinical pharmacology of autonomic drugs / D.E. Becker // Anesth Prog. - 2012. - Vol. 59, № 4. -P. 159-168.
  11. Calcium signaling in physiology and phatophysiology / H. Cheng [et al.] // Acta pharmacologica sinica. - 2006. - Vol. 27, № 7. - P. 767-772.
  12. Dani J.A. Nicotinic acetylcholine receptors as therapeutic targets: emerging frontiers in basic research and clinical science-editorial comments / J.A. Dani, D. Donnelly-Roberts, D. Bertrand // Biochem Pharmacol. - 2013. - Vol. 86, № 8. - P. 1041.
  13. D'hoedt D. Nicotinic acetylcholine receptors: an overview on drug discovery / D. D'hoedt, D. Bertrand // Expert Opin Ther Targets. - 2009. - Vol. 13, № 4. -P. 395-411.
  14. Dzeja P. Phosphotransfer networks and cellular energetics / P. Dzeja, A. Terzic // J. Exp. Biol. - 2003. - Vol. 206. -P. 2039-2047.
  15. Gladden L.B. A lactatic perspective on metabolism / L.B. Gladden // Med Sci Sports Exerc. - 2008. - Vol. 40, № 3. -P. 477-485.
  16. Gotti C. Neuronal nicotinic receptors: from structure to pathology / C. Gotti, F. Clementi // Prog. Neurobiol. - 2004. -Vol. 74, № 6. - P. 363-396.
  17. Lindstrom J. Nicotinic acetylcholine receptors in health and disease / J. Lindstrom // Mol Neurobiol. - 1997. -Vol. 15, № 2. - P. 193-222.
  18. Masino S. Adenosine, glutamate and pH: interactions and impli-cations / S. Masino, C. Dulla // Neurological. Res. - 2005. - Vol. 27, № 2. - P. 149-152.
  19. Miwa J.M. Neural systems governed by nicotinic acetylcholine receptors: emerging hypotheses / J.M. Miwa, R. Freedman, H.A. Lester // Neuron. -2011. - Vol. 70, №1. - P. 20-33.
  20. Nizri E. The role of cholinergic balance perturbation in neurological diseases / E. Nizri, I. Wirguin, T. Brenner // Drug News Perspect. - 2007. - Vol. 20, № 7. -P. 421-429.
  21. Rathouz M. Elevation of intracellular calcium levels in neurons by nicotinic acetylcholine receptors / M. Rathouz, S. Vijayaraghavan, D. Berg // Mol. Neurobiol. - 1996. - Vol. 12, № 2. -P. 117-131.
  22. Verkhratsky A. Physiology and pathophysiology of the calcium store in the endoplasmic reticulum of neurons / A. Verkhratsky // Physiol Rev. - 2005. -Vol. 85, № 1. - P. 201-279.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Гореликов П.Л., 2015

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-76803 от 24 сентября 2019 года


Данный сайт использует cookie-файлы

Продолжая использовать наш сайт, вы даете согласие на обработку файлов cookie, которые обеспечивают правильную работу сайта.

О куки-файлах