Изменения митохондрий, опосредованные воздействием загрязнителей среды обитания

Обложка


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Доступ платный или только для подписчиков

Аннотация

Введение. Митохондрии являются мишенями практически для всех типов повреждающих агентов. При этом не установлено, есть ли зависимость типа ультраструктурных изменений от химической природы воздействующего токсиканта.

Цель. Изучить функциональные и ультраструктурные изменения в митохондриях, опосредованные воздействием загрязнителей среды обитания.

Проведенный анализ позволил установить, что в результате токсического воздействия загрязнителей среды обитания на митохондрии реализуются следующие механизмы: окислительный стресс, нарушение баланса мембранных белков, снижение мембранного потенциала, нарушение кальциевого гомеостаза, высвобождение цитохрома С в цитоплазму, снижение синтеза аденозинтрифосфата и активация митохондриального апоптоза. Ультраструктурные изменения могут быть классифицированы следующим образом: нарушение распределения митохондрий по цитоплазме клетки и общее снижение их числа, изменение общей морфологии органеллы, в том числе дезорганизация и потеря крист, изменение плотности и вакуолизация матрикса, нарушение целостности мембраны, отложение токсических агентов внутри органеллы.

Заключение. Не установлено зависимости типа функциональных либо ультраструктурных изменений митохондрий от химической природы повреждающего агента.

Полный текст

Доступ закрыт

Об авторах

Лада Владимировна Шабардина

Екатеринбургский медицинский — научный центр профилактики и охраны здоровья рабочих промпредприятий

Автор, ответственный за переписку.
Email: lada.shabardina@mail.ru
ORCID iD: 0000-0002-8284-0008
SPIN-код: 8293-8305
Россия, Екатеринбург

Юлия Владимировна Рябова

Екатеринбургский медицинский — научный центр профилактики и охраны здоровья рабочих промпредприятий

Email: ryabovaiuvl@gmail.com
ORCID iD: 0000-0003-2677-0479
SPIN-код: 5062-2526

канд. мед. наук

Россия, Екатеринбург

Влада Андреевна Батенева

Екатеринбургский медицинский — научный центр профилактики и охраны здоровья рабочих промпредприятий

Email: bateneva@ymrc.ru
ORCID iD: 0000-0002-4694-0175
SPIN-код: 9581-5285
Россия, Екатеринбург

Ильзира Амировна Минигалиева

Екатеринбургский медицинский — научный центр профилактики и охраны здоровья рабочих промпредприятий

Email: ilzira-minigalieva@yandex.ru
ORCID iD: 0000-0002-0097-7845
SPIN-код: 3097-6100

д-р биол. наук

Россия, Екатеринбург

Список литературы

  1. Golpich M, Amini E, Mohamed Z, et al. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci Ther. 2017;23(1):5–22. doi: 10.1111/cns.12655 EDN: YWZAAN
  2. Hsu C-C, Tseng L-M, Lee H-C. Role of mitochondrial dysfunction in cancer progression. Exp Biol Med (Maywood). 2016;241(12):1281–1295. doi: 10.1177/1535370216641787 EDN: WUUCRX
  3. Li A, Gao M, Liu B, et al. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease. Cell Death Dis. 2022;13(5):444. doi: 10.1038/s41419-022-04906-6 EDN: GYMHJL
  4. Gupta RC, editor. Handbook of Toxicology of Chemical Warfare Agents. 3rd ed. Cambridge, Massachusetts, USA: Academic Press; 2020. doi: 10.1016/C2018-0-04837-9
  5. Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8(21):2003–2014. doi: 10.3969/j.issn.1673-5374.2013.21.009 EDN: SPKEMZ
  6. Sun MG, Williams J, Munoz-Pinedo C, et al. Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis. Nat Cell Biol. 2007;9(9):1057–1065. doi: 10.1038/ncb1630
  7. Sutunkova MP, Minigalieva IA, Panov VG, et al. Multisystemic damage to mitochondrial ultrastucture as an integral measure of the comparative in vivo cytotoxicity of metallic nanoparticles. In: IOP Conference Series: Materials Science and Engineering, Novosibirsk, 22–27 May 2020. Novosibirsk; 2020;918:012119. doi: 10.1088/1757-899X/918/1/012119 EDN: WNACMP
  8. Garcia T, Lefuente D, Blanco J, et al. Oral subchronic exposure to silver nanoparticles in rats. Food Chem Toxicol. 2016;92:177–187. doi: 10.1016/j.fct.2016.04.010
  9. Mathias FT, Romano RM, Kizys MML, et al. Daily exposure to silver nanoparticles during prepubertal development decreases adult sperm and reproductive parameters. Nanotoxicology. 2015;9(1):64–70. doi: 10.3109/17435390.2014.889237
  10. Lu C, Lv Y, Kou G, et al. Silver nanoparticles induce developmental toxicity via oxidative stress and mitochondrial dysfunction in zebrafish (Danio rerio). Ecotoxicol Environ Saf. 2022;243:113993. doi: 10.1016/j.ecoenv.2022.113993 EDN: KUTXSS
  11. Gallud A, Klӧditz K, Ytterberg J, et al. Cationic gold nanoparticles elicit mitochondrial dysfunction: a multi-omics study. Sci Rep. 2019;9(1):4366. doi: 10.1038/s41598-019-40579-6
  12. Pan Y, Leifert A, Ruau D, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 2009;5(18):2067–2076. doi: 10.1002/smll.200900466
  13. Yu K-N, Yoon T-J, Minai-Tehrani A, et al. Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation. Toxicol In Vitro. 2013;27(4):1187–1195. doi: 10.1016/j.tiv.2013.02.010
  14. Li Y, Li F, Zhang L, et al. Zinc Oxide Nanoparticles Induce Mitochondrial Biogenesis Impairment and Cardiac Dysfunction in Human iPSC-Derived Cardiomyocytes. Int J Nanomedicine. 2020;15:2669–2683. doi: 10.2147/ijn.s249912 EDN: IGOOWK
  15. Zhao X, Wang S, Wu Y, et al. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol. 2013;136–137:49–59. doi: 10.1016/j.aquatox.2013.03.019
  16. Giordo R, Nasrallah GK, Al-Jamal O, et al. Resveratrol Inhibits Oxidative Stress and Prevents Mitochondrial Damage Induced by Zinc Oxide Nanoparticles in Zebrafish (Danio rerio). Int J Mol Sci. 2020;21(11):3838. doi: 10.3390/ijms21113838 EDN: XCRVJQ
  17. Pei X, Jiang H, Xu G, et al. Lethality of Zinc Oxide Nanoparticles Surpasses Conventional Zinc Oxide via Oxidative Stress, Mitochondrial Damage and Calcium Overload: A Comparative Hepatotoxicity Study. Int J Mol Sci. 2022;23(12):6724. doi: 10.3390/ijms23126724 EDN: IQYDGS
  18. Crielaard BJ, Lammers T, Rivella S. Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov. 2017;16(6):400–423. doi: 10.1038/nrd.2016.248 EDN: YFEOVU
  19. Soenen SJ, De Smedt SC, Braeckmans K. Limitations and caveats of magnetic cell labeling using transfection agent complexed iron oxide nanoparticles. Contrast Media Mol Imaging. 2012;7(2):140–152. doi: 10.1002/cmmi.472
  20. Mao Z, Li X, Wang P, Yan H. Iron oxide nanoparticles for biomedical applications: an updated patent review (2015–2021). Expert Opin Ther Pat. 2022;32(9):939–952. doi: 10.1080/13543776.2022.2109413 EDN: WIBLYR
  21. Israel LL, Galstyan A, Holler E, Ljubimova J.Y. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J Control Release. 2020;320:45–62. doi: 10.1016/j.jconrel.2020.01.009 EDN: ZXNKPS
  22. Ruan L, Li H, Zhang J, et al. Chemical transformation and cytotoxicity of iron oxide nanoparticles (IONPs) accumulated in mitochondria. Talanta. 2023;251:123770. doi: 10.1016/j.talanta.2022.123770 EDN: NLURLY
  23. Zhang X, Zhang H, Liang X, et al. Iron Oxide Nanoparticles Induce Autophagosome Accumulation through Multiple Mechanisms: Lysosome Impairment, Mitochondrial Damage, and ER Stress. Mol Pharm. 2016;13(7):2578–2587. doi: 10.1021/acs.molpharmaceut.6b00405 EDN: WRNRMX
  24. Peng Q, Huo D, Li H, et al. ROS-independent toxicity of Fe3O4 nanoparticles to yeast cells: Involvement of mitochondrial dysfunction. Chem Biol Interact. 2018;287:20–26. doi: 10.1016/j.cbi.2018.03.012
  25. Abd El-Aziz YM, Hendam BM, Al-Salmi FA, et al. Ameliorative Effect of Pomegranate Peel Extract (PPE) on Hepatotoxicity Prompted by Iron Oxide Nanoparticles (Fe2O3-NPs) in Mice. Nanomaterials (Basel). 2022; 12(17):3074. doi: 10.3390/nano12173074 EDN: HKNBQC
  26. Rivas-García L, Quiles JL, Varela-López A, et al. Ultra-Small Iron Nanoparticles Target Mitochondria Inducing Autophagy, Acting on Mitochondrial DNA and Reducing Respiration. Pharmaceutics. 2021;13(1):90. doi: 10.3390/pharmaceutics13010090 EDN: FHTDCW
  27. Afrasiabi M, Seydi E, Rahimi S, et al. The selective toxicity of superparamagnetic iron oxide nanoparticles (SPIONs) on oral squamous cell carcinoma (OSCC) by targeting their mitochondria. J Biochem Mol Toxicol. 2021;35(6):1–8. doi: 10.1002/jbt.22769
  28. Yang J, Liu J, Wang P, et al. Toxic effect of titanium dioxide nanoparticles on corneas in vitro and in vivo. Aging (Albany NY). 2021;13(4):5020–5033. doi: 10.18632/aging.202412 EDN: KTHCRS
  29. El-Bestawy EM, Tolba AM. Effects of titanium dioxide nanoparticles on the myocardium of the adult albino rats and the protective role of β-carotene (histological, immunohistochemical and ultrastructural study). J Mol Histol. 2020;51(5):485–501. doi: 10.1007/s10735-020-09897-2 EDN: UUDDEW
  30. Hassanein KMA, El-Amir YO. Ameliorative effects of thymoquinone on titanium dioxide nanoparticles induced acute toxicity in rats. Int J Vet Sci Med. 2018;6(1):16–21. doi: 10.1016/j.ijvsm.2018.02.002
  31. Kandeil MA, Mohammed ET, Hashem KS, et al. Moringa seed extract alleviates titanium oxide nanoparticles (TiO2-NPs)-induced cerebral oxidative damage, and increases cerebral mitochondrial viability. Environ Sci Pollut Res Int. 2020;27(16):19169–19184. doi: 10.1007/s11356-019-05514-2 Erratum in: Environ Sci Pollut Res Int. 2020;27(16):19185. doi: 10.1007/s11356-019-06077-y EDN: UQMSYF
  32. Li X, Zhang C, Zhang X, et al. An acetyl-L-carnitine switch on mitochondrial dysfunction and rescue in the metabolomics study on aluminum oxide nanoparticles. Part Fibre Toxicol. 2016;13:4. doi: 10.1186/s12989-016-0115-y EDN: MCCGTK
  33. Arab-Nozari M, Zamani E, Latifi A, Shaki F. Mitochondrial toxicity of aluminium nanoparticles in comparison to its ionic form on isolated rat brain mitochondria. Bratisl Lek Listy. 2019;120(7):516–522. doi: 10.4149/bll_2019_083
  34. Henson TE, Navratilova J, Tennant AH, et al. In vitro intestinal toxicity of copper oxide nanoparticles in rat and human cell models. Nanotoxicology. 2019;13(6):795–811. doi: 10.1080/17435390.2019.1578428
  35. Mohamed Mowafy S, Awad Hegazy A, Mandour DA, Salah Abd El-Fatah S. Impact of copper oxide nanoparticles on the cerebral cortex of adult male albino rats and the potential protective role of crocin. Ultrastruct Pathol. 2021;45(4–5):307–318. doi: 10.1080/01913123.2021.1970660 EDN: ZGQXEJ
  36. Liu H, Lai W, Liu X, et al. Exposure to copper oxide nanoparticles triggers oxidative stress and endoplasmic reticulum (ER)-stress induced toxicology and apoptosis in male rat liver and BRL-3A cell. J Hazard Mater. 2021;401:123349. doi: 10.1016/j.jhazmat.2020.123349 EDN: UDMHJF
  37. Fan Y, Cheng Z, Mao L, et al. PINK1/TAX1BP1-directed mitophagy attenuates vascular endothelial injury induced by copper oxide nanoparticles. J Nanobiotechnology. 2022;20(1):149. doi: 10.1186/s12951-022-01338-4 EDN: CJWIWM
  38. Du Z, Chen S, Cui G, et al. Silica nanoparticles induce cardiomyocyte apoptosis via the mitochondrial pathway in rats following intratracheal instillation. Int J Mol Med. 2019;43(3):1229–1240. doi: 10.3892/ijmm.2018.4045
  39. Lin S, Zhang H, Wang C, et al. Metabolomics Reveal Nanoplastic-Induced Mitochondrial Damage in Human Liver and Lung Cells. Environ Sci Technol. 2022;56(17):12483–12493. doi: 10.1021/acs.est.2c03980 EDN: CYKUKX
  40. Tang Q, Li T, Chen K, et al. PS-NPs Induced Neurotoxic Effects in SHSY-5Y Cells via Autophagy Activation and Mitochondrial Dysfunction. Brain Sci. 2022;12(7):952. doi: 10.3390/brainsci12070952 EDN: DLZZDJ
  41. Yang Q, Fang Y, Zhang C, et al. Exposure to zinc induces lysosomal-mitochondrial axis-mediated apoptosis in PK-15 cells. Ecotoxicol Environ Saf. 2022;241:113716. doi: 10.1016/j.ecoenv.2022.113716 EDN: YMYKYH
  42. Billur D, Tuncay E, Okatan EN, et al. Interplay Between Cytosolic Free Zn2+ and Mitochondrion Morphological Changes in Rat Ventricular Cardiomyocytes. Biol Trace Elem Res. 2016;174(1):177–188. doi: 10.1007/s12011-016-0704-5 EDN: XTABNN
  43. Belyaeva EA, Korotkov SM. Mechanism of primary Cd2+-induced rat liver mitochondria dysfunction: discrete modes of Cd2+ action on calcium and thiol-dependent domains. Toxicol Appl Pharmacol. 2003;192(1):56–68. doi: 10.1016/s0041-008x(03)00255-2
  44. Wang Y, Wu Y, Luo K, et al. The protective effects of selenium on cadmium-induced oxidative stress and apoptosis via mitochondria pathway in mice kidney. Food Chem Toxicol. 2013;58:61–67. doi: 10.1016/j.fct.2013.04.013 EDN: RIDSQH
  45. Zhaksylykova AK, Tkachenko NL. Morphological and functional changes in some parenchymatous organs under exo and endotoxicosis. Vestnik KazNMU. 2012;(1):369–373.
  46. Zhu H-L, Shi X-T, Xu X-F, et al. Environmental cadmium exposure induces fetal growth restriction via triggering PERK-regulated mitophagy in placental trophoblasts. Environ Int. 2021;147:106319. doi: 10.1016/j.envint.2020.106319 EDN: LBYQMZ
  47. Elyasin PA, Zalavina SV, Mashak AN, et al. Tissue and ultrastructural analysis of the liver of prepubertal rats under subtoxic exposure to cadmium and lead. Journal of Siberian Medical Sciences. 2022;6(1):80–92. (In Russ.) doi: 10.31549/2542-1174-2022-6-1-80-92 EDN: NNRQNB
  48. Cao X, Fu M, Bi R, et al. Cadmium induced BEAS-2B cells apoptosis and mitochondria damage via MAPK signaling pathway. Chemosphere. 2021;263:128346. doi: 10.1016/j.chemosphere.2020.128346 EDN: HBRHAI
  49. Hernández-Cruz EY, Amador-Martínez I, Aranda-Rivera AK, et al. Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chem Biol Interact. 2022;361:109961. doi: 10.1016/j.cbi.2022.109961 EDN: LSTYYR
  50. Pan M, Cheng Z-W, Huang C-G, et al. Long-term exposure to copper induces mitochondria-mediated apoptosis in mouse hearts. Ecotoxicol Environ Saf. 2022;234:113329. doi: 10.1016/j.ecoenv.2022.113329 EDN: XEEGJT
  51. Yang L, Li X, Jiang A, et al. Metformin alleviates lead-induced mitochondrial fragmentation via AMPK/Nrf2 activation in SH-SY5Y cells. Redox Biol. 2020;36:101626. doi: 10.1016/j.redox.2020.101626 EDN: FWDXYX
  52. Abdullaev VR, Muradova GR, Abdullayeva NM. The luminescent analysis of mitochondria state at impact of some heavy metals. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2015;17(5):243–246. (In Russ.) EDN: VBYNJV
  53. Ma L, Bi K-D, Fan Y-M, et al. In vitro modulation of mercury-induced rat liver mitochondria dysfunction. Toxicol Res (Camb). 2018;7(6):1135–1143. doi: 10.1039/c8tx00060c
  54. Goncharenko AV, Goncharenko MS. Mechanisms of damaging effect of manganese in toxic concentrations on cellular and subcellular levels. Ukrainian Journal of Ecology. 2012;(2):47–57.
  55. Davis C. Lithium. In: Enna SJ, Bylund DB, editors. xPharm: The Comprehensive Pharmacology Reference. New York, NY: Elsevier; 2007. P. 1–6. doi: 10.1016/B978-008055232-3.62041-0
  56. Ommati MM, Arabnezhad MR, Farshad O, et al. The Role of Mitochondrial Impairment and Oxidative Stress in the Pathogenesis of Lithium-Induced Reproductive Toxicity in Male Mice. Front Vet Sci. 2021;8:603262. doi: 10.3389/fvets.2021.603262 EDN: MPRNEO
  57. Zare Gashti R, Mohammadi H. Sodium dithionate (Na2S2O4) induces oxidative damage in mice mitochondria heart tissue. Toxicol Rep. 2022;9:1391–1397. doi: 10.1016/j.toxrep.2022.06.016 EDN: YBEKVN
  58. Rahmani S, Rezaei M. Toxicity of fluoride on isolated rat liver mitochondria. Journal of Fluorine Chemistry. 2020;239:109636. doi: 10.1016/j.jfluchem.2020.109636 EDN: HNUBUJ
  59. Zhao Y, Zhao H, Xu H, et al. Perfluorooctane sulfonate exposure induces preeclampsia-like syndromes by damaging trophoblast mitochondria in pregnant mice. Ecotoxicol Environ Saf. 2022;247:114256. doi: 10.1016/j.ecoenv.2022.114256 EDN: EFWGDJ
  60. Isabekova MA, Seydaliyeva LT. Deystviye pestitsidov na perekisnoye okisleniye lipidov v mitokhondriyakh i mikrosomakh gepatotsitov krys. Evraziyskiy Soyuz Uchenykh. 2015;(2):85–88. (In Russ.) EDN: XGWZKN
  61. Mezera V, Endlicher R, Kucera O, et al. Effects of Epigallocatechin Gallate on Tert-Butyl Hydroperoxide-Induced Mitochondrial Dysfunction in Rat Liver Mitochondria and Hepatocytes. Oxid Med Cell Longev. 2016;2016:7573131. doi: 10.1155/2016/7573131
  62. Yuan Y, Yucai L, Lu L, et al. Acrylamide induces ferroptosis in HSC-T6 cells by causing antioxidant imbalance of the XCT-GSH-GPX4 signaling and mitochondrial dysfunction. Toxicol Lett. 2022;368:24–32. doi: 10.1016/j.toxlet.2022.08.007 EDN: JWCDMR
  63. Tenkov KS, Dubinin MV, Vedernikov AA, et al. An in vivo study of the toxic effects of triclosan on Xenopus laevis (Daudin, 1802) frog: Assessment of viability, tissue damage and mitochondrial dysfunction. Comp Biochem Physiol C Toxicol Pharmacol. 2022;259:109401. doi: 10.1016/j.cbpc.2022.109401 EDN: SSBDDO
  64. Zorova LD, Popkov VA, Plotnikov EJ, et al. Roles of Mitochondrial Membrane Potential. Biologicheskie Membrany. 2017;34(6):93–100. (In Russ.) doi: 10.7868/S0233475517060020 EDN: ZRBNAX

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML
2. Рис. 1. Предположительный механизм токсического воздействия загрязнителей среды обитания на митохондрии: АФК — активные формы кислорода; ПОЛ — перекисное окисление липидов; АТФ — аденозинтрифосфат.

Скачать (640KB)

© Эко-Вектор, 2025



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС77-76803 от 24 сентября 2019 года