Mitochondrial Alterations Mediated by Exposure to Environmental Pollutants

Cover Page


Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

INTRODUCTION: Mitochondria are targets for virtually all damaging agents. However, the dependence of the type of ultrastructural alterations on the chemical nature of the toxicant has not been established.

AIM: To study functional and ultrastructural alterations in mitochondria mediated by exposure to environmental pollutants.

The conducted analysis showed that toxic environmental pollutants realize their effect through the following mechanisms: oxidative stress, disruption of membrane protein balance, reduction of membrane potential, disruption of calcium homeostasis, release of cytochrome C into the cytoplasm, reduction of adenosine triphosphate synthesis and activation of mitochondrial apoptosis. Ultrastructural alterations can be classified as follows: disorders in the distribution of mitochondria in the cell cytoplasm and general decrease in their number, modification of the general morphology of the organelle, including disorganization and loss of cristae, alteration of matrix density and its vacuolization, breakage of the integrity of the membrane, deposition of toxic agents within the organelle.

CONCLUSION: No dependence of the type of functional or ultrastructural alterations of mitochondria on the chemical nature of the damaging agent was found.

Full Text

Restricted Access

About the authors

Lada V. Shabardina

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Author for correspondence.
Email: lada.shabardina@mail.ru
ORCID iD: 0000-0002-8284-0008
SPIN-code: 8293-8305
Russian Federation, Ekaterinburg

Yuliya V. Ryabova

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: ryabovaiuvl@gmail.com
ORCID iD: 0000-0003-2677-0479
SPIN-code: 5062-2526

MD, Cand. Sci. (Medicine)

Russian Federation, Ekaterinburg

Vlada A. Bateneva

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: bateneva@ymrc.ru
ORCID iD: 0000-0002-4694-0175
SPIN-code: 9581-5285
Russian Federation, Ekaterinburg

Ilzira A. Minigalieva

Ekaterinburg Medical Research Center for Prophylaxis and Health Protection in Industrial Workers

Email: ilzira-minigalieva@yandex.ru
ORCID iD: 0000-0002-0097-7845
SPIN-code: 3097-6100

Dr. Sci. (Biology)

Russian Federation, Ekaterinburg

References

  1. Golpich M, Amini E, Mohamed Z, et al. Mitochondrial Dysfunction and Biogenesis in Neurodegenerative diseases: Pathogenesis and Treatment. CNS Neurosci Ther. 2017;23(1):5–22. doi: 10.1111/cns.12655 EDN: YWZAAN
  2. Hsu C-C, Tseng L-M, Lee H-C. Role of mitochondrial dysfunction in cancer progression. Exp Biol Med (Maywood). 2016;241(12):1281–1295. doi: 10.1177/1535370216641787 EDN: WUUCRX
  3. Li A, Gao M, Liu B, et al. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease. Cell Death Dis. 2022;13(5):444. doi: 10.1038/s41419-022-04906-6 EDN: GYMHJL
  4. Gupta RC, editor. Handbook of Toxicology of Chemical Warfare Agents. 3rd ed. Cambridge, Massachusetts, USA: Academic Press; 2020. doi: 10.1016/C2018-0-04837-9
  5. Guo C, Sun L, Chen X, Zhang D. Oxidative stress, mitochondrial damage and neurodegenerative diseases. Neural Regen Res. 2013;8(21):2003–2014. doi: 10.3969/j.issn.1673-5374.2013.21.009 EDN: SPKEMZ
  6. Sun MG, Williams J, Munoz-Pinedo C, et al. Correlated three-dimensional light and electron microscopy reveals transformation of mitochondria during apoptosis. Nat Cell Biol. 2007;9(9):1057–1065. doi: 10.1038/ncb1630
  7. Sutunkova MP, Minigalieva IA, Panov VG, et al. Multisystemic damage to mitochondrial ultrastucture as an integral measure of the comparative in vivo cytotoxicity of metallic nanoparticles. In: IOP Conference Series: Materials Science and Engineering, Novosibirsk, 22–27 May 2020. Novosibirsk; 2020;918:012119. doi: 10.1088/1757-899X/918/1/012119 EDN: WNACMP
  8. Garcia T, Lefuente D, Blanco J, et al. Oral subchronic exposure to silver nanoparticles in rats. Food Chem Toxicol. 2016;92:177–187. doi: 10.1016/j.fct.2016.04.010
  9. Mathias FT, Romano RM, Kizys MML, et al. Daily exposure to silver nanoparticles during prepubertal development decreases adult sperm and reproductive parameters. Nanotoxicology. 2015;9(1):64–70. doi: 10.3109/17435390.2014.889237
  10. Lu C, Lv Y, Kou G, et al. Silver nanoparticles induce developmental toxicity via oxidative stress and mitochondrial dysfunction in zebrafish (Danio rerio). Ecotoxicol Environ Saf. 2022;243:113993. doi: 10.1016/j.ecoenv.2022.113993 EDN: KUTXSS
  11. Gallud A, Klӧditz K, Ytterberg J, et al. Cationic gold nanoparticles elicit mitochondrial dysfunction: a multi-omics study. Sci Rep. 2019;9(1):4366. doi: 10.1038/s41598-019-40579-6
  12. Pan Y, Leifert A, Ruau D, et al. Gold nanoparticles of diameter 1.4 nm trigger necrosis by oxidative stress and mitochondrial damage. Small. 2009;5(18):2067–2076. doi: 10.1002/smll.200900466
  13. Yu K-N, Yoon T-J, Minai-Tehrani A, et al. Zinc oxide nanoparticle induced autophagic cell death and mitochondrial damage via reactive oxygen species generation. Toxicol In Vitro. 2013;27(4):1187–1195. doi: 10.1016/j.tiv.2013.02.010
  14. Li Y, Li F, Zhang L, et al. Zinc Oxide Nanoparticles Induce Mitochondrial Biogenesis Impairment and Cardiac Dysfunction in Human iPSC-Derived Cardiomyocytes. Int J Nanomedicine. 2020;15:2669–2683. doi: 10.2147/ijn.s249912 EDN: IGOOWK
  15. Zhao X, Wang S, Wu Y, et al. Acute ZnO nanoparticles exposure induces developmental toxicity, oxidative stress and DNA damage in embryo-larval zebrafish. Aquat Toxicol. 2013;136–137:49–59. doi: 10.1016/j.aquatox.2013.03.019
  16. Giordo R, Nasrallah GK, Al-Jamal O, et al. Resveratrol Inhibits Oxidative Stress and Prevents Mitochondrial Damage Induced by Zinc Oxide Nanoparticles in Zebrafish (Danio rerio). Int J Mol Sci. 2020;21(11):3838. doi: 10.3390/ijms21113838 EDN: XCRVJQ
  17. Pei X, Jiang H, Xu G, et al. Lethality of Zinc Oxide Nanoparticles Surpasses Conventional Zinc Oxide via Oxidative Stress, Mitochondrial Damage and Calcium Overload: A Comparative Hepatotoxicity Study. Int J Mol Sci. 2022;23(12):6724. doi: 10.3390/ijms23126724 EDN: IQYDGS
  18. Crielaard BJ, Lammers T, Rivella S. Targeting iron metabolism in drug discovery and delivery. Nat Rev Drug Discov. 2017;16(6):400–423. doi: 10.1038/nrd.2016.248 EDN: YFEOVU
  19. Soenen SJ, De Smedt SC, Braeckmans K. Limitations and caveats of magnetic cell labeling using transfection agent complexed iron oxide nanoparticles. Contrast Media Mol Imaging. 2012;7(2):140–152. doi: 10.1002/cmmi.472
  20. Mao Z, Li X, Wang P, Yan H. Iron oxide nanoparticles for biomedical applications: an updated patent review (2015–2021). Expert Opin Ther Pat. 2022;32(9):939–952. doi: 10.1080/13543776.2022.2109413 EDN: WIBLYR
  21. Israel LL, Galstyan A, Holler E, Ljubimova J.Y. Magnetic iron oxide nanoparticles for imaging, targeting and treatment of primary and metastatic tumors of the brain. J Control Release. 2020;320:45–62. doi: 10.1016/j.jconrel.2020.01.009 EDN: ZXNKPS
  22. Ruan L, Li H, Zhang J, et al. Chemical transformation and cytotoxicity of iron oxide nanoparticles (IONPs) accumulated in mitochondria. Talanta. 2023;251:123770. doi: 10.1016/j.talanta.2022.123770 EDN: NLURLY
  23. Zhang X, Zhang H, Liang X, et al. Iron Oxide Nanoparticles Induce Autophagosome Accumulation through Multiple Mechanisms: Lysosome Impairment, Mitochondrial Damage, and ER Stress. Mol Pharm. 2016;13(7):2578–2587. doi: 10.1021/acs.molpharmaceut.6b00405 EDN: WRNRMX
  24. Peng Q, Huo D, Li H, et al. ROS-independent toxicity of Fe3O4 nanoparticles to yeast cells: Involvement of mitochondrial dysfunction. Chem Biol Interact. 2018;287:20–26. doi: 10.1016/j.cbi.2018.03.012
  25. Abd El-Aziz YM, Hendam BM, Al-Salmi FA, et al. Ameliorative Effect of Pomegranate Peel Extract (PPE) on Hepatotoxicity Prompted by Iron Oxide Nanoparticles (Fe2O3-NPs) in Mice. Nanomaterials (Basel). 2022; 12(17):3074. doi: 10.3390/nano12173074 EDN: HKNBQC
  26. Rivas-García L, Quiles JL, Varela-López A, et al. Ultra-Small Iron Nanoparticles Target Mitochondria Inducing Autophagy, Acting on Mitochondrial DNA and Reducing Respiration. Pharmaceutics. 2021;13(1):90. doi: 10.3390/pharmaceutics13010090 EDN: FHTDCW
  27. Afrasiabi M, Seydi E, Rahimi S, et al. The selective toxicity of superparamagnetic iron oxide nanoparticles (SPIONs) on oral squamous cell carcinoma (OSCC) by targeting their mitochondria. J Biochem Mol Toxicol. 2021;35(6):1–8. doi: 10.1002/jbt.22769
  28. Yang J, Liu J, Wang P, et al. Toxic effect of titanium dioxide nanoparticles on corneas in vitro and in vivo. Aging (Albany NY). 2021;13(4):5020–5033. doi: 10.18632/aging.202412 EDN: KTHCRS
  29. El-Bestawy EM, Tolba AM. Effects of titanium dioxide nanoparticles on the myocardium of the adult albino rats and the protective role of β-carotene (histological, immunohistochemical and ultrastructural study). J Mol Histol. 2020;51(5):485–501. doi: 10.1007/s10735-020-09897-2 EDN: UUDDEW
  30. Hassanein KMA, El-Amir YO. Ameliorative effects of thymoquinone on titanium dioxide nanoparticles induced acute toxicity in rats. Int J Vet Sci Med. 2018;6(1):16–21. doi: 10.1016/j.ijvsm.2018.02.002
  31. Kandeil MA, Mohammed ET, Hashem KS, et al. Moringa seed extract alleviates titanium oxide nanoparticles (TiO2-NPs)-induced cerebral oxidative damage, and increases cerebral mitochondrial viability. Environ Sci Pollut Res Int. 2020;27(16):19169–19184. doi: 10.1007/s11356-019-05514-2 Erratum in: Environ Sci Pollut Res Int. 2020;27(16):19185. doi: 10.1007/s11356-019-06077-y EDN: UQMSYF
  32. Li X, Zhang C, Zhang X, et al. An acetyl-L-carnitine switch on mitochondrial dysfunction and rescue in the metabolomics study on aluminum oxide nanoparticles. Part Fibre Toxicol. 2016;13:4. doi: 10.1186/s12989-016-0115-y EDN: MCCGTK
  33. Arab-Nozari M, Zamani E, Latifi A, Shaki F. Mitochondrial toxicity of aluminium nanoparticles in comparison to its ionic form on isolated rat brain mitochondria. Bratisl Lek Listy. 2019;120(7):516–522. doi: 10.4149/bll_2019_083
  34. Henson TE, Navratilova J, Tennant AH, et al. In vitro intestinal toxicity of copper oxide nanoparticles in rat and human cell models. Nanotoxicology. 2019;13(6):795–811. doi: 10.1080/17435390.2019.1578428
  35. Mohamed Mowafy S, Awad Hegazy A, Mandour DA, Salah Abd El-Fatah S. Impact of copper oxide nanoparticles on the cerebral cortex of adult male albino rats and the potential protective role of crocin. Ultrastruct Pathol. 2021;45(4–5):307–318. doi: 10.1080/01913123.2021.1970660 EDN: ZGQXEJ
  36. Liu H, Lai W, Liu X, et al. Exposure to copper oxide nanoparticles triggers oxidative stress and endoplasmic reticulum (ER)-stress induced toxicology and apoptosis in male rat liver and BRL-3A cell. J Hazard Mater. 2021;401:123349. doi: 10.1016/j.jhazmat.2020.123349 EDN: UDMHJF
  37. Fan Y, Cheng Z, Mao L, et al. PINK1/TAX1BP1-directed mitophagy attenuates vascular endothelial injury induced by copper oxide nanoparticles. J Nanobiotechnology. 2022;20(1):149. doi: 10.1186/s12951-022-01338-4 EDN: CJWIWM
  38. Du Z, Chen S, Cui G, et al. Silica nanoparticles induce cardiomyocyte apoptosis via the mitochondrial pathway in rats following intratracheal instillation. Int J Mol Med. 2019;43(3):1229–1240. doi: 10.3892/ijmm.2018.4045
  39. Lin S, Zhang H, Wang C, et al. Metabolomics Reveal Nanoplastic-Induced Mitochondrial Damage in Human Liver and Lung Cells. Environ Sci Technol. 2022;56(17):12483–12493. doi: 10.1021/acs.est.2c03980 EDN: CYKUKX
  40. Tang Q, Li T, Chen K, et al. PS-NPs Induced Neurotoxic Effects in SHSY-5Y Cells via Autophagy Activation and Mitochondrial Dysfunction. Brain Sci. 2022;12(7):952. doi: 10.3390/brainsci12070952 EDN: DLZZDJ
  41. Yang Q, Fang Y, Zhang C, et al. Exposure to zinc induces lysosomal-mitochondrial axis-mediated apoptosis in PK-15 cells. Ecotoxicol Environ Saf. 2022;241:113716. doi: 10.1016/j.ecoenv.2022.113716 EDN: YMYKYH
  42. Billur D, Tuncay E, Okatan EN, et al. Interplay Between Cytosolic Free Zn2+ and Mitochondrion Morphological Changes in Rat Ventricular Cardiomyocytes. Biol Trace Elem Res. 2016;174(1):177–188. doi: 10.1007/s12011-016-0704-5 EDN: XTABNN
  43. Belyaeva EA, Korotkov SM. Mechanism of primary Cd2+-induced rat liver mitochondria dysfunction: discrete modes of Cd2+ action on calcium and thiol-dependent domains. Toxicol Appl Pharmacol. 2003;192(1):56–68. doi: 10.1016/s0041-008x(03)00255-2
  44. Wang Y, Wu Y, Luo K, et al. The protective effects of selenium on cadmium-induced oxidative stress and apoptosis via mitochondria pathway in mice kidney. Food Chem Toxicol. 2013;58:61–67. doi: 10.1016/j.fct.2013.04.013 EDN: RIDSQH
  45. Zhaksylykova AK, Tkachenko NL. Morphological and functional changes in some parenchymatous organs under exo and endotoxicosis. Vestnik KazNMU. 2012;(1):369–373.
  46. Zhu H-L, Shi X-T, Xu X-F, et al. Environmental cadmium exposure induces fetal growth restriction via triggering PERK-regulated mitophagy in placental trophoblasts. Environ Int. 2021;147:106319. doi: 10.1016/j.envint.2020.106319 EDN: LBYQMZ
  47. Elyasin PA, Zalavina SV, Mashak AN, et al. Tissue and ultrastructural analysis of the liver of prepubertal rats under subtoxic exposure to cadmium and lead. Journal of Siberian Medical Sciences. 2022;6(1):80–92. (In Russ.) doi: 10.31549/2542-1174-2022-6-1-80-92 EDN: NNRQNB
  48. Cao X, Fu M, Bi R, et al. Cadmium induced BEAS-2B cells apoptosis and mitochondria damage via MAPK signaling pathway. Chemosphere. 2021;263:128346. doi: 10.1016/j.chemosphere.2020.128346 EDN: HBRHAI
  49. Hernández-Cruz EY, Amador-Martínez I, Aranda-Rivera AK, et al. Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chem Biol Interact. 2022;361:109961. doi: 10.1016/j.cbi.2022.109961 EDN: LSTYYR
  50. Pan M, Cheng Z-W, Huang C-G, et al. Long-term exposure to copper induces mitochondria-mediated apoptosis in mouse hearts. Ecotoxicol Environ Saf. 2022;234:113329. doi: 10.1016/j.ecoenv.2022.113329 EDN: XEEGJT
  51. Yang L, Li X, Jiang A, et al. Metformin alleviates lead-induced mitochondrial fragmentation via AMPK/Nrf2 activation in SH-SY5Y cells. Redox Biol. 2020;36:101626. doi: 10.1016/j.redox.2020.101626 EDN: FWDXYX
  52. Abdullaev VR, Muradova GR, Abdullayeva NM. The luminescent analysis of mitochondria state at impact of some heavy metals. Izvestiya Samarskogo nauchnogo tsentra Rossiyskoy akademii nauk. 2015;17(5):243–246. (In Russ.) EDN: VBYNJV
  53. Ma L, Bi K-D, Fan Y-M, et al. In vitro modulation of mercury-induced rat liver mitochondria dysfunction. Toxicol Res (Camb). 2018;7(6):1135–1143. doi: 10.1039/c8tx00060c
  54. Goncharenko AV, Goncharenko MS. Mechanisms of damaging effect of manganese in toxic concentrations on cellular and subcellular levels. Ukrainian Journal of Ecology. 2012;(2):47–57.
  55. Davis C. Lithium. In: Enna SJ, Bylund DB, editors. xPharm: The Comprehensive Pharmacology Reference. New York, NY: Elsevier; 2007. P. 1–6. doi: 10.1016/B978-008055232-3.62041-0
  56. Ommati MM, Arabnezhad MR, Farshad O, et al. The Role of Mitochondrial Impairment and Oxidative Stress in the Pathogenesis of Lithium-Induced Reproductive Toxicity in Male Mice. Front Vet Sci. 2021;8:603262. doi: 10.3389/fvets.2021.603262 EDN: MPRNEO
  57. Zare Gashti R, Mohammadi H. Sodium dithionate (Na2S2O4) induces oxidative damage in mice mitochondria heart tissue. Toxicol Rep. 2022;9:1391–1397. doi: 10.1016/j.toxrep.2022.06.016 EDN: YBEKVN
  58. Rahmani S, Rezaei M. Toxicity of fluoride on isolated rat liver mitochondria. Journal of Fluorine Chemistry. 2020;239:109636. doi: 10.1016/j.jfluchem.2020.109636 EDN: HNUBUJ
  59. Zhao Y, Zhao H, Xu H, et al. Perfluorooctane sulfonate exposure induces preeclampsia-like syndromes by damaging trophoblast mitochondria in pregnant mice. Ecotoxicol Environ Saf. 2022;247:114256. doi: 10.1016/j.ecoenv.2022.114256 EDN: EFWGDJ
  60. Isabekova MA, Seydaliyeva LT. Deystviye pestitsidov na perekisnoye okisleniye lipidov v mitokhondriyakh i mikrosomakh gepatotsitov krys. Evraziyskiy Soyuz Uchenykh. 2015;(2):85–88. (In Russ.) EDN: XGWZKN
  61. Mezera V, Endlicher R, Kucera O, et al. Effects of Epigallocatechin Gallate on Tert-Butyl Hydroperoxide-Induced Mitochondrial Dysfunction in Rat Liver Mitochondria and Hepatocytes. Oxid Med Cell Longev. 2016;2016:7573131. doi: 10.1155/2016/7573131
  62. Yuan Y, Yucai L, Lu L, et al. Acrylamide induces ferroptosis in HSC-T6 cells by causing antioxidant imbalance of the XCT-GSH-GPX4 signaling and mitochondrial dysfunction. Toxicol Lett. 2022;368:24–32. doi: 10.1016/j.toxlet.2022.08.007 EDN: JWCDMR
  63. Tenkov KS, Dubinin MV, Vedernikov AA, et al. An in vivo study of the toxic effects of triclosan on Xenopus laevis (Daudin, 1802) frog: Assessment of viability, tissue damage and mitochondrial dysfunction. Comp Biochem Physiol C Toxicol Pharmacol. 2022;259:109401. doi: 10.1016/j.cbpc.2022.109401 EDN: SSBDDO
  64. Zorova LD, Popkov VA, Plotnikov EJ, et al. Roles of Mitochondrial Membrane Potential. Biologicheskie Membrany. 2017;34(6):93–100. (In Russ.) doi: 10.7868/S0233475517060020 EDN: ZRBNAX

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. The proposed mechanism of toxic effects of environmental pollutants on mitochondria: ROS — reactive oxygen species; POL — lipid peroxidation; ATP — adenosine triphosphate.

Download (1MB)

Copyright (c) 2025 Eco-Vector


Media Registry Entry of the Federal Service for Supervision of Communications, Information Technology and Mass Communications (Roskomnadzor) PI No. FS77-76803 dated September 24, 2019.