Predictors of early-onset neonatal infections (review)

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅或者付费存取

详细

Infections of the early neonatal period and neonatal sepsis are the most common cause of critical condition, various complications and unfavorable outcome of the disease, both in the early and distant periods, but there are currently no reliable criteria for diagnosis, which makes it difficult to recognize the infectious process early. Based on the results of numerous studies, it was found that the clinical blood test has extremely low clinical value for the diagnosis of infections and early neonatal sepsis. It was found that the concentration of C-reactive protein in the blood rises 10–12 hours after the appearance of the first clinical manifestations of infection and peaks 48 hours later. An increase in C-reactive protein to 20 mg/L 48 hours after birth is possible even in newborns without infection, so its use as a marker of infections of the early neonatal period is very difficult. The threshold for C-reactive protein concentration in the first days of life is 10 mg/L. Premature babies have lower C-reactive protein values compared to full-term newborns. Increasing the concentration of procalcitonin, as well as C-reactive protein, immediately after birth is physiological, which limits their diagnostic value in the first 2–4 days of life. The procalcitonin concentration study is more justified for making an informed decision to discontinue antibacterial therapy. Presepsin is one of the earliest markers of a severe course of infections in newborns, since its concentration does not depend on the term of gestation. The level of N-terminal pro-BNP can be used as a marker of cardiovascular dysfunction, an increase in its level is associated with the severity of the infectious process and fatal outcome. A universal marker of infections of the early neonatal period and sepsis in newborns is currently absent, which indicates the need for a thorough assessment of all available clinical and laboratory tests over time.

全文:

受限制的访问

作者简介

Yurii Aleksandrovich

Saint Petersburg State Pediatric Medical University

编辑信件的主要联系方式.
Email: jalex1963@mail.ru
ORCID iD: 0000-0002-2131-4813
SPIN 代码: 2225-1630

MD, PhD, Dr. Sci. (Medicine), Professor, Head of the Department of Anesthesiology and Intensive Care and Emergency Pediatrics Postgraduate Education

俄罗斯联邦, Saint Petersburg

Dmitry Ivanov

Saint Petersburg State Pediatric Medical University

Email: spb@gpma.ru
ORCID iD: 0000-0002-0060-4168
SPIN 代码: 4437-9626

MD, PhD, Dr. Sci. (Medicine), Professor, Chief Freelance Neonatologist of the Ministry of Health of Russia, Rector, Head of the Department of Neonatology with courses of Neurology and Obstetrics and Gynecology, Postgraduate Education

俄罗斯联邦, Saint Petersburg

Ekaterina Pavlovskaya

Saint Petersburg State Pediatric Medical University; St. Nicholas the Children’s City Hospital No. 17

Email: l.pavlovskaya@yandex.ru
ORCID iD: 0000-0001-9960-7141
SPIN 代码: 4308-6025

anesthesiologist and intensive care physician; Applicant of the Department of Anesthesiology and Intensive Care and Emergency Pediatrics Postgraduate Education

俄罗斯联邦, Saint Petersburg; Saint Petersburg

Konstantin Pshenisnov

Saint Petersburg State Pediatric Medical University

Email: Psh_K@mail.ru
ORCID iD: 0000-0003-1113-5296
SPIN 代码: 8423-4294

MD, PhD, Dr. Sci. (Medicine), Associate Professor, Professor of the Department of Anesthesiology and Intensive Care and Emergency Pediatrics Postgraduate Education

俄罗斯联邦, Saint Petersburg

参考

  1. Aleksandrovich YuS, Boronina IV, Pshenisnov KV, Popova IN. Concentration of serum procalcitonin as а criterion of antibacterial therapy refuse in groups of late prematerm and term newborns with suspected early neonatal sepsis. Neonatology: News, Opinions, Training. 2019;7(1):44–52. EDN: ZDBMJV doi: 10.24411/2308-2402-2019-11006
  2. Aleksandrovich YuS, Ivanov DO, Pavlovskaya EYu, et al. Features of microbiota in newborns in critical condition at admission to the intensive care unit of a specialized hospital. Messenger of Anesthesiology and Resuscitation. 2022;19(2):56–63. EDN: ELVTVU doi: 10.21292/2078-5658-2022-19-2-56-63
  3. Alexandrovich YuS, Pshenisnov KV, Ivanov DO. Neonatal sepsis. Saint Petersburg: SPbGPMU; 2019. 176 p. (In Russ.)
  4. Zinina EP, Tsarenko SV, Logunov DY, et al. The role of proinflammatory andanti-inflammatory cytokines inbacterial pneumonia. Review. Annals of Critical Care. 2021;(1):77–89. EDN: TZDXAZ doi: 10.21320/1818-474X-2021-1-77-89
  5. Ivanov DO. Systemic inflammatory response in neonatal sepsis: the same whether it? Translyatsionnaya Meditsina. 2014;(1):53–61. EDN: SJKOSZ
  6. Ivanov DO, Atlasov VO, Bobrov SA, et al. Manual of perinatology. Saint Petersburg: Inform-Navigator; 2015. 1214 p. (In Russ.)
  7. Ivanov DO, Yuryev VK, Moiseeva KE, et al. Dynamics and forecast of mortality among newborns in obstetric organizations of the Russian Federation. Meditsina i Organizatsiya Zdravookhraneniya. 2021;6(3):4–19. EDN: ONZSWY
  8. Kasohov TB, Coraeva ZA, Merdenova ZS. Indicators of immune status of newborn premature infants with infectious and inflammatory diseases. Sovremennye Problemy Nauki i Obrazovaniya. 2016;(2):133. EDN: VUCVZZ
  9. Krjuchkova OG, Velikanova EA, Grigor’ev EV. Diagnostic aspects of systemic inflammatory response in early neonatal sepsis. Messenger of Anesthesiology and Resuscitation. 2015;12(6):68–78. EDN: VLCGAT doi: 10.21292/2078-5658-2015-12-6-68-78
  10. Maslennikova IN, Bokeriya EL, Ivanets TYu, et al. Experience of the natriuretic peptide use in the complex diagnosis and treatment of newborns with heart failure. Pediatriya. Zhurnal im G.N. Speranskogo. 2020; 99(3):16–22. EDN: UTJQIP doi: 10.24110/0031-403X-2020-99-3-16-22
  11. Perepelitsa SA. Etiologic and pathogenic perinatal factors for the development of intrauterine infections in newborns (review). General Reanimatology. 2018;14(3):54–67. (In Russ.) EDN: XROWKT doi: 10.15360/1813-9779-2018-3-54-67
  12. Pohlebkina AA. The role of markers of acute inflammation. Medicine: Theory and Practice. 2018;3(S):60–65. EDN: YPUSAP
  13. Strukov DV, Alexandrovich YuS, Vasiliev AG. Actual aspects of sepsis and septic shock. Pediatrician (St. Petersburg) 2014;5(2):81–87. EDN: SLRANZ doi: 10.17816/PED5281-87
  14. Al Saleh K, Al Qahtani RM. Platelet count patterns and patient outcomes in sepsis at a tertiary care center: Beyond the APACHE score. Medicine (Baltimore). 2021;100(18):e25013. doi: 10.1097/MD.0000000000025013
  15. Al-Gwaiz LA, Babay HH. The diagnostic value of absolute neutrophil count, band count and morphologic changes of neutrophils in predicting bacterial infections. Med Princ Pract. 2007;16(5):344–347. doi: 10.1159/000104806
  16. Bhat YR, Kousika P, Lewis L, Purkayastha J. Prevalence and severity of thrombocytopenia in blood culture proven neonatal sepsis: a prospective study. Arch Pediatr Infect Dis. 2018;6(2):e12471. doi: 10.3109/09537104.2011.582526
  17. Cantey JB, Lee JH. Biomarkers for the diagnosis of neonatal sepsis. Clin Perinatol. 2021;48(2):215–227. doi: 10.1016/j.clp.2021.03.012
  18. Celik IH, Hanna M, Canpolat FE, et al. Diagnosis of neonatal sepsis: the past, present and future. Pediatr Res. 2022;91(2):337–350. doi: 10.1038/s41390-021-01696-z
  19. Chauhan N, Tiwari S, Jain U. Potential biomarkers for effective screening of neonatal sepsis infections: An overview. Microb Pathog. 2017;107:234–242. doi: 10.1016/j.micpath.2017.03.042
  20. Christ-Crain M, Morgenthaler NG, Stolz D, et al. Pro-adrenomedullin to predict severity and outcome in community-acquired pneumonia. Crit Care. 2006;10(3): R96. doi: 10.1186/cc4955
  21. Delanghe JR, Speeckaert MM. Translational research and biomarkers in neonatal sepsis. Clin Chim Acta. 2015;451(Pt A):46–64. doi: 10.1016/j.cca.2015.01.031
  22. Effenberger-Neidnicht K, Hartmann M. Mechanisms of hemolysis during sepsis. Inflammation. 2018;41(5):1569–1581. doi: 10.1007/s10753-018-0810-y
  23. Eichberger J, Resch E, Resch B. Diagnosis of neonatal sepsis: the role of inflammatory markers. Front Pediatr. 2022;10:840288. doi: 10.3389/fped.2022.840288
  24. Fahmey SS, Mostafa H, Elhafeez NA, Hussain H. Diagnostic and prognostic value of proadrenomedullin in neonatal sepsis. Korean J Pediatr. 2018;61(5):156–159. doi: 10.3345/kjp.2018.61.5.156
  25. Fan Y, Han Q, Li J, et al. Revealing potential diagnostic gene biomarkers of septic shock based on machine learning analysis. BMC Infect Dis. 2022;22(1):65. doi: 10.1186/s12879-022-07056-4
  26. Fleiss N, Tarun S, Polin RA. Infection prevention for extremely low birth weight infants in the NICU. Semin Fetal Neonatal Med. 2022;27(3):101345. doi: 10.1016/j.siny.2022.101345
  27. Fu Q, Yu W, Fu S, et al. Screening and identification of key gene in sepsis development: Evidence from bioinformatics analysis. Medicine (Baltimore). 2020;99(27): e20759. doi: 10.1097/MD.0000000000020759
  28. Gkentzi D, Dimitriou G. Procalcitonin use for shorter courses of antibiotic therapy in suspected early-onset neonatal sepsis: are we getting there? J Thorac Dis. 2017;9(12):4899–4902. doi: 10.21037/jtd.2017.11.80
  29. Gupta BK, Gupta BK, Shrivastava AK, et al. A study of neonatal sepsis and its relation to thrombocytopenia in neonates of tertiary care hospital of Western Nepal. J Preg Child Health. 2019;6(5):421.
  30. Hincu MA, Zonda GI, Stanciu GD, et al. Relevance of biomarkers currently in use or research for practical diagnosis approach of neonatal early-onset sepsis. Children (Basel). 2020;7(12):309. doi: 10.3390/children7120309
  31. Hisamuddin E, Hisam A, Wahid S, Raza G. Validity of C-reactive protein (CRP) for diagnosis of neonatal sepsis. Pak J Med Sci. 2015;31(3):527–531. doi: 10.12669/pjms.313.6668
  32. Hofer N, Zacharias E, Müller W, Resch B. An update on the use of C-reactive protein in early-onset neonatal sepsis: current insights and new tasks. Neonatology. 2012;102(1):25–36. doi: 10.1159/000336629
  33. Levi M. Platelets in critical illness. Semin ThrombHemost. 2016;42(3):252–257. doi: 10.1055/s-0035-1570080
  34. Memar MY, Alizadeh N, Varshochi M, Kafil HS. Immunologic biomarkers for diagnostic of early-onset neonatal sepsis. J Matern Fetal Neonatal Med. 2019;32(1):143–153. doi: 10.1080/14767058.2017.1366984
  35. Milas GP, Issaris V. Proadrenomedullin and neonatal sepsis: a systematic review and meta-analysis of diagnostic accuracy. Eur J Pediatr. 2022;181(1):59–71. doi: 10.1007/s00431-021-04214-9
  36. Molloy EJ, Bearer CF. Paediatric and neonatal sepsis and inflammation. Pediatr Res. 2022;91(2):267–269. doi: 10.1038/s41390-021-01918-4
  37. Mussap M, Puxeddu E, Burrai P, et al. Soluble CD14 subtype (sCD14-ST) presepsin in critically ill preterm newborns: preliminary reference ranges. J Matern Fetal Neonatal Med. 2012;25(Suppl 5): 51–53. doi: 10.3109/14767058.2012.717462
  38. Ognean ML, Boicean A, Șular FL, et al. Complete blood count and differential in diagnosis of early onset neonatal sepsis. Rev Rom Med Lab. 2017;25(1):1–9. doi: 10.1515/rrlm-2016-0042
  39. Okur N, Buyuktiryaki M, Uras N, et al. Role of N-terminal pro-brain natriuretic peptide in the early diagnosis of neonatal sepsis. Journal of Pediatric Infectious Diseases. 2019;14(5):228–234. doi: 10.1055/s-0039-1692341
  40. Omar J, Isa S, Ismail TST, et al. Procalcitonin as an early laboratory marker of sepsis in neonates: variation in diagnostic performance and discrimination value. Malays J Med Sci. 2019;26(4):61–69. doi: 10.21315/mjms2019.26.4.7
  41. Perrone S, Lotti F, Longini M, et al. C reactive protein in healthy term newborns during the first 48 hours of life. Arch Dis Child Fetal Neonatal Ed. 2018;103(2):F163–F166. doi: 10.1136/archdischild-2016-312506
  42. Poggi C, Lucenteforte E, Petri D, De et al. Presepsin for the diagnosis of neonatal early-onset sepsis: a systematic review and meta-analysis. JAMA Pediatr. 2022;176(8):750–758. doi: 10.1001/jamapediatrics.2022.1647
  43. Priolo F, Maggio L, Fattore S, et al. Cord blood presepsin as a predictor of early-onset neonatal sepsis in term and preterm newborns. Ital J Pediatr. 2023;49(1):35. doi: 10.1186/s13052-023-01420-z
  44. Puspaningtyas NW, Karyanti MR, Paramita TN, et al. Presepsin as a promising biomarker for early detection of post-operative infection in children. Front Pediatr. 2023;11:1036993. doi: 10.3389/fped.2023.1036993
  45. Ree IMC, Fustolo-Gunnink SF, Bekker V, et al. Thrombocytopenia in neonatal sepsis: Incidence, severity and risk factors. PLoS One. 2017;12(10):e0185581. doi: 10.1371/journal.pone.0185581
  46. Ruan L, Chen GY, Liu Z, et al. The combination of procalcitonin and C-reactive protein or presepsin alone improves the accuracy of diagnosis of neonatal sepsis: a meta-analysis and systematic review. Crit Care. 2018;22(1):316. doi: 10.1186/s13054-018-2236-1
  47. Solé-Ribalta A, Bobillo-Pérez S, Valls A, et al. Diagnostic and prognostic value of procalcitonin and mid-regional pro-adrenomedullin in septic paediatric patients. Eur J Pediatr. 2020;179(7):1089–1096. doi: 10.1007/s00431-020-03587-7
  48. Stocker M, van Herk W, El Helou S, et al. Procalcitonin-guided decision making for duration of antibiotic therapy in neonates with suspected early-onset sepsis: a multicentre, randomised controlled trial (NeoPIns). Lancet. 2017;390(10097):871–881. doi: 10.1016/S0140-6736(17)31444-7
  49. Vardon-Bounes F, Ruiz S, Gratacap MP, et al. Platelets are critical key players in sepsis. Int J Mol Sci. 2019;20(14):3494. doi: 10.3390/ijms20143494
  50. Webbe JWH, Duffy JMN, Afonso E, et al. Core outcomes in neonatology: development of a core outcome set for neonatal research. Arch Dis Child Fetal Neonatal Ed. 2020;105(4):425–431. doi: 10.1136/archdischild-2019-317501
  51. Xie H, Huo Y, Chen Q, Hou X. Application of B-type natriuretic peptide in neonatal diseases. Front Pediatr. 2021;9:767173. doi: 10.3389/fped.2021.767173
  52. Yang JH, Bhargava P, McCloskey D, et al. Antibiotic-induced changes to the host metabolic environment inhibit drug efficacy and alter immune function. Cell Host Microbe. 2017;22(6):757–765.e3. doi: 10.1016/j.chom.2017.10.020
  53. Zhang Y, Khalid S, Jiang L. Diagnostic and predictive performance of biomarkers in patients with sepsis in an intensive care unit. J Int Med Res. 2019;47(1):44–58. doi: 10.1177/0300060518793791

补充文件

附件文件
动作
1. JATS XML

版权所有 © Eco-Vector, 2023



СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 69634 от 15.03.2021 г.


##common.cookie##