Strain diversity and antibiotic-sensitivity of staphylococcus spp. Isolates from patients of multiprofile pediatric hospital in St. Petersburg, Russia

Cover Page

Cite item

Full Text

Open Access Open Access
Restricted Access Access granted
Restricted Access Subscription or Fee Access

Abstract

Background. Staphylocci are the leading pus-forming Gram-positive bacteria in the children’s hospitals. The prevalence of the antibiotic resistant strains among them limits therapeutic effects of infections in children.

Aim. The research is aimed at characterizing the species of staphylococcus, which are isolated from the different clinical specimens of the patients at the clinics of Saint Petersburg State Pediatric Medical University in 2019, and analysis of their susceptibility to antimicrobial agents.

Materials and metods. According to the clinical recommendations of 2018, susceptibility to antimicrobial drugs (AMD) was revealed in 860 strains of staphylococci determined by the disc diffusion method, which were identified by the automated analyser Vitek-2 compact.

Results. Six species of staphylococci were represented at the hospital departments, among which Staphylococcus epidermidis prevailed in the departments of the neonate pathology department and intensive care units (63.0% and 46.2% respectively), Staphylococcus aureus is commonly found at the departments of surgery and the departments of the therapeutic profiles (61.7% and 46.2% respectively). More than a half of the staphylococci strains (63.0%) were resistant to at least one of the antimicrobial drugs. Vancomycin and line solid showed the highest activity to these staphylococci. High specific weight of multidrug resistant (MDR) bacteria (37.8%) and extensively drug resistant (XDR) strains of the phenotype (33.0%) was revealed. The level of antibiotic resistant strains was the highest in Staphylococcus haemolyticus (98.1%) and S. epidermidis (82.0%), while the specific weight of the resistant ones, MDR and XDR strains was extremely low among S. aureus (16.2%, 1.5% and 0.4 respectively), as well as in methicillin-resistant isolates (0.8%).

Conclusions. A great variety of antibiotic resistance was revealed among the staphylococci. The prevalence of these strains in the pediatric hospitals requires constant local monitoring of the antibiotic resistant staphylococci.

Full Text

Restricted Access

About the authors

D. P. Gladin

Saint Petersburg State Pediatric Medical University

Author for correspondence.
Email: gladin1975@mail.ru

MD, Cand. Sci. (Med.), Associate Professor, Head, Department of Microbiology, Virusology & Immunology

Russian Federation, Saint Petersburg

A. R. Khairullina

Saint Petersburg State Pediatric Medical University

Email: alinka_1614@mail.ru

6th year student of faculty General Medicine

Russian Federation, Saint Petersburg

A. M. Korolyuk

Saint Petersburg State Pediatric Medical University

Email: microb3@mail.ru

MD, Dr. Sci. (Med.), Professor, Department of Microbiology, Virusology & Immunology

Russian Federation, Saint Petersburg

N. S. Kozlova

North-Western State Medical University named after I.I. Mechnikov

Email: spbkns@gmail.com

MD, Associate Professor, Department of Medical Microbiology

Russian Federation, Saint Petersburg

O. V. Ananyeva

Saint Petersburg State Pediatric Medical University

Email: olgaaov@gmail.com

Bacteriologist of the Central Clinical Diagnostic Laboratory

Russian Federation, Saint Petersburg

O. G. Gorbunov

Saint Petersburg State Pediatric Medical University

Email: bak-gpmu@mail.ru

Head of Bacteriological Laboratory of the Central Clinical Diagnostic Laboratory

Russian Federation, Saint Petersburg

References

  1. Avdeev SN, Avedisova AS, Avetisov SE, et al. Federal’noe rukovodstvo po ispol’zovaniyu lekarstvennyh sredstv (formulyarnaya sistema). Moscow: Vidoks; 2017. (In Russ.)
  2. Avchinnikov AV, Egoricheva SD. Hygienic aspects of prevention of healthcare associated infection in maternity homes. Vestnik of the Smolensk State Medical Academy. 2015;14(3):92–96. (In Russ.)
  3. Alekseev VV, Alipov AN, Andreev VA, et al. Medicinskie laboratornye tekhnologii. Moscow: GEOTAR-Media; 2013. (In Russ.)
  4. Gostev VV, Kalinogorskaja OS, Kruglov AN, Sidorenko SV. Antibiotic Resistance of Coagulase-Negative Staphylococci Isolated at Hospitals of St. Petersburg and Moscow. Antibiotics and Chemotherapy. 2015;60(9–10):23–28. (In Russ.)
  5. Dzhioev JuP, Zlobin VI, Salovarova VP, et al. Analysis of the “superbacteria” issue and contemporary approaches to its solution. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(4):665–678. (In Russ.) doi: 10.21285/2227-2925-2019-9-4-665-678
  6. Dyatlov IA, Detusheva EV, Mitsevich IP, et al. Sensitivity and formation of stability to antiseptics and disinfectants in hospital infections. Bacteriology. 2017;2(2):48–58. (In Russ.) doi: 10.20953/2500-1027-2017-2-48-58
  7. Ivanov DO, Atlasov VO, Bobrov SA, et al. Rukovodstvo po perinatologii. Saint Petersburg: Inform-Navigator; 2015. 1214 p. (In Russ.)
  8. Kozlova NS, Barantsevich EP, Barantsevich NE, Goik VG. Antibiotic resistance of staphylococci isolated from blood. Nauchnoe obozrenie. 2014;3:184–190. (In Russ.)
  9. Kozlova NS, Barantsevich NE, Ivanova LV, et al. Susceptibility to antibiotics in nosocomial staphylococci from multidisciplinary hospital. Problems in Medical Mycology. 2015;17(4):58–62. (In Russ.)
  10. Kozlova NS, Barantsevich NE, Barantsevich EP. Antibiotic resistance of pathogens of purulent-septic infections in a multidisciplinary hospital. Problems in Medical Mycology. 2018;20(1):40–48. (In Russ.)
  11. Nikolaeva IV, Anokhin VA. Staphylococcal infections in pediatrics. Practical Medicine. 2010;(1):24–27. (In Russ.)
  12. Romanov AV, Dekhnich AV, Sukhorukova MV, et al.; Study group “MARAFON”. Аntimicrobial resistance of nosocomial Staphylococcus aureus isolated in Russia: results of the national multicenter epidemiological study “MARATHON” 2013–2014. Clinical Microbiology and Antimicrobial Chemotherapy. 2017;19(1):57–62. (In Russ.)
  13. O sanitarno-epidemiologicheskoy obstanovke v Rossiyskoy federatsii v 2014 godu: Gosudarstvennyy doklad Moscow: Federal’naya sluzhba po nadzoru v sfere zashchity prav potrebitelya i blagopoluchiya cheloveka. Tsentr gigieny i epidemiologii Rospotrebnadzora. 2015. 206 p.
  14. Labinskaja AS, Volgina EG, Kovaleva EP, eds. Rukovodstvo po medicinskoj mikrobiologii. Kniga III. Tom 2. Opportunisticheskie infekcii: kliniko-jepidemiologicheskie aspekty. Moscow: BINOM; 2014 (In Russ.)
  15. Shihverdiev NN, Hubulava GG, Marchenko SP, et al. The choice of an antibacterial drug for topical use in the prevention of sternal infection. Pediatr. 2017;8(2): 89–93. doi: 10.17816/PED8289-93 (In Russ.)
  16. Yakovlev SV, Protsenko DN, Shakhova TV, et al. Antibiotic Resistance in Hospital: Do we control the situation? Antibiotics and Chemotherapy. 2010;55(1–2): 50–58. (In Russ.)
  17. Antonelli A, Giani T, Coppi M, et al. Staphylococcus aureus from hospital-acquired pneumonia from an Italian nationwide survey: activity of ceftobiprole and other anti-staphylococcal agents, and molecular epidemiology of methicillin-resistant isolates. J Antimicrob Chemother. 2019;7(12):3453–3461. doi: 10.1093/jac/dkz371
  18. Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev. 2014;27(4): 870–926. doi: 10.1128/CMR.00109-13
  19. Blanchard AC, Fortin E, Laferrie’re C, et al. Comparative effectiveness of linezolid versus vancomycin as definitive antibiotic therapy for heterogeneously resistant vancomycin-intermediate coagulase-negative staphylococcal central-line-associated bloodstream infections in a neonatal intensive care unit. J Antimicrob Chemother. 2017;72(6):1812–1817. doi: 10.1093/jac/dkx059
  20. Blane B., Raven K., Leek D., et al. Rapid sequencing of MRSA direct from clinical plates in a routine microbiology laboratory. J Antimicrob Chemother. 2019;74(8):2153–2156. doi: 10.1093/jac/dkz170
  21. Butin M, Martins-Simoes P, Pichon B, et al. Emergence and dissemination of a linezolid-resistant Staphylococcus capitis clone in Europe. J Antimicrob Chemother. 2017;72(4):1014–1020. doi: 10.1093/jac/dkw516
  22. Conen A, Walti L, Merlo A, et al. Characteristics and treatment outcome of cerebrospinal fluid shunt-associated infections in adults: a retrospective analysis over an 11-year period. Clin Infect Dis. 2008;47: 73–82. doi: 10.1086/588298
  23. De Oliveira D, Forde B, Kidd T, et al. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev. 2020;33(3):1–49. doi: 10.1128/CMR.00181-19
  24. Hellmark B, Unemo M, Nilsdotter-Augustinsson A, Soderquist B. Antibiotic susceptibility among Staphylococcus epidermidis isolated from prosthetic joint infections with special focus on rifampicin and variability of the rpoB gene. Clin Microbiol Infect. 2009;15(3): 238–244. doi: 10.1111/j.1469-0691.2008.02663
  25. Humphries R, Magnanom P, Burnham C, et al. Evaluation of Surrogate Tests for the Presence of mecA-Mediated Methicillin Resistance in Staphylococcus capitis, Staphylococcus haemolyticus, Staphylococcus hominis, and Staphylococcus warneri. J Clin Microbiol. 2020;59(1): e02290–20. doi: 10.1128/JCM.02290-20
  26. Krediet T, Jones M, Janssen K, et al. Prevalence of molecular types and mecA gene carriage of coagulase-negative Staphylococci in a neonatal intensive care unit: relation to nosocomial septicemia. J Clin Microbiol. 2001;39:3376–3378. doi: 10.1128/JCM.39.9.3376-3378.2001
  27. Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev. 2018;31(4): 1–103. doi: 10.1128/CMR.00020-18
  28. Littorin C, Hellmark B, Nilsdotter-Augustinsson Å, Söderquist B. In vitro activity of tedizolid and linezolid against Staphylococcus epidermidis isolated from prosthetic joint infections. Eur J Clin Microbiol & Infect Dis. 2017;36(9):1549–1552. doi: 10.1007/s10096-017-2966-z
  29. Naccache S, Callan K, Burnham C, et al. Evaluation of oxacillin and cefoxitin disk diffusion and microbroth dilution methods for detecting mecA-mediated β-lactam resistance in contemporary Staphylococcus epidermidis isolates. J Clin Microbiol. 2019;57(12): 1–10. doi: 10.1128/JCM.00961-19
  30. Raad I. Intravascular-catheter-related infections. Lancet. 1998;351(9106):893–898. doi: 10.1016/S0140-6736(97)10006-X
  31. Sadovskaya I, Vinogradov E, Flahaut S, et al. Extracellular carbohydrate-containing polymers of a model biofilm-producing strain Staphylococcus epidermidis. Infect Immun. 2005;73(5):3007–3017. doi: 10.1128/IAI.73.5.3007-3017.2005
  32. Tong S, Davis J, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–661. doi: 10.1128/CMR.00134-14
  33. Watkins R, Holubar M, David M. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrob Agents Chemother. 2019;63(12): e01216–e1219. doi: 10.1128/AAC.01216-19
  34. Widerstrom M, Wistrom J, Sjostedt A, Monsen T. Coagulase-negative staphylococci: update on the molecular epidemiology and clinical presentation, with a focus on Staphylococcus epidermidis and Staphylococcus saprophyticus. Eur J Clin Microbiol & Infec. Dis. 2012;31(1):7–20. doi: 10.1007/s10096-011-1270-6

Supplementary files

Supplementary Files
Action
1. JATS XML
2. Fig. 1. Frequency of occurrence of staphylococcal strains sensitive and resistant to antibacterial drugs in the hospital

Download (114KB)
3. Fig. 2. Occurrence of MDR and XDR staphylococcal strains in the different departments of the hospital

Download (138KB)
4. Fig. 3. Most common antimicrobial susceptibility patterns of S. epidermidis. Azm – azithromycin, Amc – amoxiclav, Gn – gentamicin, Ox – oxacillin, Cip – ciprofloxacin, Ckt – cefoxitin

Download (145KB)
5. Fig. 4. Antimicrobial patterns of S. aureus. Azm – azithromycin, Amc – amoxiclav, Gn – gentamicin, Ox – oxacillin, Cip – ciprofloxacin, Ckt – cefoxitin

Download (147KB)
6. Fig. 5. Antimicrobial patterns of S. haemolyticus. Azm – azithromycin, Amc – amoxiclav, Gn – gentamicin, Ox – oxacillin, Cip – ciprofloxacin, Ckt – cefoxitin

Download (114KB)

Copyright (c) 2021 Gladin D.P., Khairullina A.R., Korolyuk A.M., Kozlova N.S., Ananyeva O.V., Gorbunov O.G.

Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 69634 от 15.03.2021 г.


This website uses cookies

You consent to our cookies if you continue to use our website.

About Cookies