圣彼得堡某多学科儿童医院分离葡萄球菌的种类组成及对抗菌药物的敏感性
- 作者: Gladin D.P.1, Khairullina A.R.1, Korolyuk A.M.1, Kozlova N.S.2, Ananyeva O.V.1, Gorbunov O.G.1
-
隶属关系:
- Saint Petersburg State Pediatric Medical University
- North-Western State Medical University named after I.I. Mechnikov
- 期: 卷 12, 编号 4 (2021)
- 页面: 15-25
- 栏目: Original studies
- URL: https://journals.eco-vector.com/pediatr/article/view/90045
- DOI: https://doi.org/10.17816/PED12415-25
- ID: 90045
如何引用文章
详细
研究现实性。在儿童医院革兰氏阳性菌中,葡萄球菌是化脓性脓毒性疾病的主要致病菌。耐抗生素菌株在它们中间的传播限制了治疗儿童这类感染的可能性。
本研究旨在对St.Petersburg State Pediatric Medical University 2019年门诊患者各种临床材料中分离的葡萄球菌进行物种组成特征分析,并分析其对抗菌药物的敏感性。
材料与方法。根据2018年临床建议,采用圆片扩散法860株葡萄球菌抗菌药物敏感性,采用Vitek-2全自动小型分析仪进行鉴定。
结果。院内葡萄球菌有6种,新生儿病理科和重症监护室以表皮葡萄球菌(Staphylococcus epidermidis)为主(分别为63.0和46.2%),外科和治疗科以金黄色葡萄球菌(Staphylococcus aureus)为主(分别 为61.7和46.2%)。超过一半的葡萄球菌(63.0%)对至少一种抗菌药物耐药。万古霉素(Vancomycin)和利奈唑胺(Linezolid)对菌株的抑制作用最强。高比例的多抗性(MDR—multidrug-resistant)培养(37.8%) 和广泛耐药(XDR—extensively drug-resistant)菌株(33.0%)被鉴定。耐药菌株以溶血葡萄球菌(Staphylococcus haemolyticus)(98.1%)和表皮葡萄球菌(S.epidermidis)(82.0%)所占比例最大。而耐药、多耐药和广泛耐药在金黄色葡萄球菌(S.aureus)中所占比例极低(分别为16,2,1,5和0.4%),以及耐甲氧西林 菌株(0.8%)。
结论。葡萄球菌的耐药谱多种多样。这类病毒在儿童医院的传播需要地方一级的持续监测。
全文:

作者简介
D. Gladin
Saint Petersburg State Pediatric Medical University
编辑信件的主要联系方式.
Email: gladin1975@mail.ru
MD, Cand. Sci. (Med.), Associate Professor, Head, Department of Microbiology, Virusology & Immunology
俄罗斯联邦, Saint PetersburgA. Khairullina
Saint Petersburg State Pediatric Medical University
Email: alinka_1614@mail.ru
6th year student of faculty General Medicine
俄罗斯联邦, Saint PetersburgA. Korolyuk
Saint Petersburg State Pediatric Medical University
Email: microb3@mail.ru
MD, Dr. Sci. (Med.), Professor, Department of Microbiology, Virusology & Immunology
俄罗斯联邦, Saint PetersburgN. Kozlova
North-Western State Medical University named after I.I. Mechnikov
Email: spbkns@gmail.com
MD, Associate Professor, Department of Medical Microbiology
俄罗斯联邦, Saint PetersburgO. Ananyeva
Saint Petersburg State Pediatric Medical University
Email: olgaaov@gmail.com
Bacteriologist of the Central Clinical Diagnostic Laboratory
俄罗斯联邦, Saint PetersburgO. Gorbunov
Saint Petersburg State Pediatric Medical University
Email: bak-gpmu@mail.ru
Head of Bacteriological Laboratory of the Central Clinical Diagnostic Laboratory
俄罗斯联邦, Saint Petersburg参考
- Avdeev SN, Avedisova AS, Avetisov SE, et al. Federal’noe rukovodstvo po ispol’zovaniyu lekarstvennyh sredstv (formulyarnaya sistema). Moscow: Vidoks; 2017. (In Russ.)
- Avchinnikov AV, Egoricheva SD. Hygienic aspects of prevention of healthcare associated infection in maternity homes. Vestnik of the Smolensk State Medical Academy. 2015;14(3):92–96. (In Russ.)
- Alekseev VV, Alipov AN, Andreev VA, et al. Medicinskie laboratornye tekhnologii. Moscow: GEOTAR-Media; 2013. (In Russ.)
- Gostev VV, Kalinogorskaja OS, Kruglov AN, Sidorenko SV. Antibiotic Resistance of Coagulase-Negative Staphylococci Isolated at Hospitals of St. Petersburg and Moscow. Antibiotics and Chemotherapy. 2015;60(9–10):23–28. (In Russ.)
- Dzhioev JuP, Zlobin VI, Salovarova VP, et al. Analysis of the “superbacteria” issue and contemporary approaches to its solution. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(4):665–678. (In Russ.) doi: 10.21285/2227-2925-2019-9-4-665-678
- Dyatlov IA, Detusheva EV, Mitsevich IP, et al. Sensitivity and formation of stability to antiseptics and disinfectants in hospital infections. Bacteriology. 2017;2(2):48–58. (In Russ.) doi: 10.20953/2500-1027-2017-2-48-58
- Ivanov DO, Atlasov VO, Bobrov SA, et al. Rukovodstvo po perinatologii. Saint Petersburg: Inform-Navigator; 2015. 1214 p. (In Russ.)
- Kozlova NS, Barantsevich EP, Barantsevich NE, Goik VG. Antibiotic resistance of staphylococci isolated from blood. Nauchnoe obozrenie. 2014;3:184–190. (In Russ.)
- Kozlova NS, Barantsevich NE, Ivanova LV, et al. Susceptibility to antibiotics in nosocomial staphylococci from multidisciplinary hospital. Problems in Medical Mycology. 2015;17(4):58–62. (In Russ.)
- Kozlova NS, Barantsevich NE, Barantsevich EP. Antibiotic resistance of pathogens of purulent-septic infections in a multidisciplinary hospital. Problems in Medical Mycology. 2018;20(1):40–48. (In Russ.)
- Nikolaeva IV, Anokhin VA. Staphylococcal infections in pediatrics. Practical Medicine. 2010;(1):24–27. (In Russ.)
- Romanov AV, Dekhnich AV, Sukhorukova MV, et al.; Study group “MARAFON”. Аntimicrobial resistance of nosocomial Staphylococcus aureus isolated in Russia: results of the national multicenter epidemiological study “MARATHON” 2013–2014. Clinical Microbiology and Antimicrobial Chemotherapy. 2017;19(1):57–62. (In Russ.)
- O sanitarno-epidemiologicheskoy obstanovke v Rossiyskoy federatsii v 2014 godu: Gosudarstvennyy doklad Moscow: Federal’naya sluzhba po nadzoru v sfere zashchity prav potrebitelya i blagopoluchiya cheloveka. Tsentr gigieny i epidemiologii Rospotrebnadzora. 2015. 206 p.
- Labinskaja AS, Volgina EG, Kovaleva EP, eds. Rukovodstvo po medicinskoj mikrobiologii. Kniga III. Tom 2. Opportunisticheskie infekcii: kliniko-jepidemiologicheskie aspekty. Moscow: BINOM; 2014 (In Russ.)
- Shihverdiev NN, Hubulava GG, Marchenko SP, et al. The choice of an antibacterial drug for topical use in the prevention of sternal infection. Pediatr. 2017;8(2): 89–93. doi: 10.17816/PED8289-93 (In Russ.)
- Yakovlev SV, Protsenko DN, Shakhova TV, et al. Antibiotic Resistance in Hospital: Do we control the situation? Antibiotics and Chemotherapy. 2010;55(1–2): 50–58. (In Russ.)
- Antonelli A, Giani T, Coppi M, et al. Staphylococcus aureus from hospital-acquired pneumonia from an Italian nationwide survey: activity of ceftobiprole and other anti-staphylococcal agents, and molecular epidemiology of methicillin-resistant isolates. J Antimicrob Chemother. 2019;7(12):3453–3461. doi: 10.1093/jac/dkz371
- Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev. 2014;27(4): 870–926. doi: 10.1128/CMR.00109-13
- Blanchard AC, Fortin E, Laferrie’re C, et al. Comparative effectiveness of linezolid versus vancomycin as definitive antibiotic therapy for heterogeneously resistant vancomycin-intermediate coagulase-negative staphylococcal central-line-associated bloodstream infections in a neonatal intensive care unit. J Antimicrob Chemother. 2017;72(6):1812–1817. doi: 10.1093/jac/dkx059
- Blane B., Raven K., Leek D., et al. Rapid sequencing of MRSA direct from clinical plates in a routine microbiology laboratory. J Antimicrob Chemother. 2019;74(8):2153–2156. doi: 10.1093/jac/dkz170
- Butin M, Martins-Simoes P, Pichon B, et al. Emergence and dissemination of a linezolid-resistant Staphylococcus capitis clone in Europe. J Antimicrob Chemother. 2017;72(4):1014–1020. doi: 10.1093/jac/dkw516
- Conen A, Walti L, Merlo A, et al. Characteristics and treatment outcome of cerebrospinal fluid shunt-associated infections in adults: a retrospective analysis over an 11-year period. Clin Infect Dis. 2008;47: 73–82. doi: 10.1086/588298
- De Oliveira D, Forde B, Kidd T, et al. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev. 2020;33(3):1–49. doi: 10.1128/CMR.00181-19
- Hellmark B, Unemo M, Nilsdotter-Augustinsson A, Soderquist B. Antibiotic susceptibility among Staphylococcus epidermidis isolated from prosthetic joint infections with special focus on rifampicin and variability of the rpoB gene. Clin Microbiol Infect. 2009;15(3): 238–244. doi: 10.1111/j.1469-0691.2008.02663
- Humphries R, Magnanom P, Burnham C, et al. Evaluation of Surrogate Tests for the Presence of mecA-Mediated Methicillin Resistance in Staphylococcus capitis, Staphylococcus haemolyticus, Staphylococcus hominis, and Staphylococcus warneri. J Clin Microbiol. 2020;59(1): e02290–20. doi: 10.1128/JCM.02290-20
- Krediet T, Jones M, Janssen K, et al. Prevalence of molecular types and mecA gene carriage of coagulase-negative Staphylococci in a neonatal intensive care unit: relation to nosocomial septicemia. J Clin Microbiol. 2001;39:3376–3378. doi: 10.1128/JCM.39.9.3376-3378.2001
- Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev. 2018;31(4): 1–103. doi: 10.1128/CMR.00020-18
- Littorin C, Hellmark B, Nilsdotter-Augustinsson Å, Söderquist B. In vitro activity of tedizolid and linezolid against Staphylococcus epidermidis isolated from prosthetic joint infections. Eur J Clin Microbiol & Infect Dis. 2017;36(9):1549–1552. doi: 10.1007/s10096-017-2966-z
- Naccache S, Callan K, Burnham C, et al. Evaluation of oxacillin and cefoxitin disk diffusion and microbroth dilution methods for detecting mecA-mediated β-lactam resistance in contemporary Staphylococcus epidermidis isolates. J Clin Microbiol. 2019;57(12): 1–10. doi: 10.1128/JCM.00961-19
- Raad I. Intravascular-catheter-related infections. Lancet. 1998;351(9106):893–898. doi: 10.1016/S0140-6736(97)10006-X
- Sadovskaya I, Vinogradov E, Flahaut S, et al. Extracellular carbohydrate-containing polymers of a model biofilm-producing strain Staphylococcus epidermidis. Infect Immun. 2005;73(5):3007–3017. doi: 10.1128/IAI.73.5.3007-3017.2005
- Tong S, Davis J, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–661. doi: 10.1128/CMR.00134-14
- Watkins R, Holubar M, David M. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrob Agents Chemother. 2019;63(12): e01216–e1219. doi: 10.1128/AAC.01216-19
- Widerstrom M, Wistrom J, Sjostedt A, Monsen T. Coagulase-negative staphylococci: update on the molecular epidemiology and clinical presentation, with a focus on Staphylococcus epidermidis and Staphylococcus saprophyticus. Eur J Clin Microbiol & Infec. Dis. 2012;31(1):7–20. doi: 10.1007/s10096-011-1270-6
补充文件
