圣彼得堡某多学科儿童医院分离葡萄球菌的种类组成及对抗菌药物的敏感性

封面

如何引用文章

全文:

开放存取 开放存取
受限制的访问 ##reader.subscriptionAccessGranted##
受限制的访问 订阅存取

详细

研究现实性。在儿童医院革兰氏阳性菌中,葡萄球菌是化脓性脓毒性疾病的主要致病菌。耐抗生素菌株在它们中间的传播限制了治疗儿童这类感染的可能性。

本研究旨在对St.Petersburg State Pediatric Medical University 2019年门诊患者各种临床材料中分离的葡萄球菌进行物种组成特征分析,并分析其对抗菌药物的敏感性。

材料与方法。根据2018年临床建议,采用圆片扩散法860株葡萄球菌抗菌药物敏感性,采用Vitek-2全自动小型分析仪进行鉴定。

结果。院内葡萄球菌有6种,新生儿病理科和重症监护室以表皮葡萄球菌(Staphylococcus epidermidis)为主(分别为63.0和46.2%),外科和治疗科以金黄色葡萄球菌(Staphylococcus aureus)为主(分别­ 为61.7和46.2%)。超过一半的葡萄球菌(63.0%)对至少一种抗菌药物耐药。万古霉素(Vancomycin)和利奈唑胺(Linezolid)对菌株的抑制作用最强。高比例的多抗性(MDR—multidrug-resistant)培养(37.8%) 和广泛耐药(XDR—extensively drug-resistant)菌株(33.0%)被鉴定。耐药菌株以溶血葡萄球菌(Staphylococcus haemolyticus)(98.1%)和表皮葡萄球菌(S.epidermidis)(82.0%)所占比例最大。而耐药、多耐药和广泛耐药在金黄色葡萄球菌(S.aureus)中所占比例极低(分别为16,2,1,5和0.4%),以及耐甲氧西林 菌株(0.8%)。

结论。葡萄球菌的耐药谱多种多样。这类病毒在儿童医院的传播需要地方一级的持续监测。

全文:

受限制的访问

作者简介

D. Gladin

Saint Petersburg State Pediatric Medical University

编辑信件的主要联系方式.
Email: gladin1975@mail.ru

MD, Cand. Sci. (Med.), Associate Professor, Head, Department of Microbiology, Virusology & Immunology

俄罗斯联邦, Saint Petersburg

A. Khairullina

Saint Petersburg State Pediatric Medical University

Email: alinka_1614@mail.ru

6th year student of faculty General Medicine

俄罗斯联邦, Saint Petersburg

A. Korolyuk

Saint Petersburg State Pediatric Medical University

Email: microb3@mail.ru

MD, Dr. Sci. (Med.), Professor, Department of Microbiology, Virusology & Immunology

俄罗斯联邦, Saint Petersburg

N. Kozlova

North-Western State Medical University named after I.I. Mechnikov

Email: spbkns@gmail.com

MD, Associate Professor, Department of Medical Microbiology

俄罗斯联邦, Saint Petersburg

O. Ananyeva

Saint Petersburg State Pediatric Medical University

Email: olgaaov@gmail.com

Bacteriologist of the Central Clinical Diagnostic Laboratory

俄罗斯联邦, Saint Petersburg

O. Gorbunov

Saint Petersburg State Pediatric Medical University

Email: bak-gpmu@mail.ru

Head of Bacteriological Laboratory of the Central Clinical Diagnostic Laboratory

俄罗斯联邦, Saint Petersburg

参考

  1. Avdeev SN, Avedisova AS, Avetisov SE, et al. Federal’noe rukovodstvo po ispol’zovaniyu lekarstvennyh sredstv (formulyarnaya sistema). Moscow: Vidoks; 2017. (In Russ.)
  2. Avchinnikov AV, Egoricheva SD. Hygienic aspects of prevention of healthcare associated infection in maternity homes. Vestnik of the Smolensk State Medical Academy. 2015;14(3):92–96. (In Russ.)
  3. Alekseev VV, Alipov AN, Andreev VA, et al. Medicinskie laboratornye tekhnologii. Moscow: GEOTAR-Media; 2013. (In Russ.)
  4. Gostev VV, Kalinogorskaja OS, Kruglov AN, Sidorenko SV. Antibiotic Resistance of Coagulase-Negative Staphylococci Isolated at Hospitals of St. Petersburg and Moscow. Antibiotics and Chemotherapy. 2015;60(9–10):23–28. (In Russ.)
  5. Dzhioev JuP, Zlobin VI, Salovarova VP, et al. Analysis of the “superbacteria” issue and contemporary approaches to its solution. Proceedings of Universities. Applied Chemistry and Biotechnology. 2019;9(4):665–678. (In Russ.) doi: 10.21285/2227-2925-2019-9-4-665-678
  6. Dyatlov IA, Detusheva EV, Mitsevich IP, et al. Sensitivity and formation of stability to antiseptics and disinfectants in hospital infections. Bacteriology. 2017;2(2):48–58. (In Russ.) doi: 10.20953/2500-1027-2017-2-48-58
  7. Ivanov DO, Atlasov VO, Bobrov SA, et al. Rukovodstvo po perinatologii. Saint Petersburg: Inform-Navigator; 2015. 1214 p. (In Russ.)
  8. Kozlova NS, Barantsevich EP, Barantsevich NE, Goik VG. Antibiotic resistance of staphylococci isolated from blood. Nauchnoe obozrenie. 2014;3:184–190. (In Russ.)
  9. Kozlova NS, Barantsevich NE, Ivanova LV, et al. Susceptibility to antibiotics in nosocomial staphylococci from multidisciplinary hospital. Problems in Medical Mycology. 2015;17(4):58–62. (In Russ.)
  10. Kozlova NS, Barantsevich NE, Barantsevich EP. Antibiotic resistance of pathogens of purulent-septic infections in a multidisciplinary hospital. Problems in Medical Mycology. 2018;20(1):40–48. (In Russ.)
  11. Nikolaeva IV, Anokhin VA. Staphylococcal infections in pediatrics. Practical Medicine. 2010;(1):24–27. (In Russ.)
  12. Romanov AV, Dekhnich AV, Sukhorukova MV, et al.; Study group “MARAFON”. Аntimicrobial resistance of nosocomial Staphylococcus aureus isolated in Russia: results of the national multicenter epidemiological study “MARATHON” 2013–2014. Clinical Microbiology and Antimicrobial Chemotherapy. 2017;19(1):57–62. (In Russ.)
  13. O sanitarno-epidemiologicheskoy obstanovke v Rossiyskoy federatsii v 2014 godu: Gosudarstvennyy doklad Moscow: Federal’naya sluzhba po nadzoru v sfere zashchity prav potrebitelya i blagopoluchiya cheloveka. Tsentr gigieny i epidemiologii Rospotrebnadzora. 2015. 206 p.
  14. Labinskaja AS, Volgina EG, Kovaleva EP, eds. Rukovodstvo po medicinskoj mikrobiologii. Kniga III. Tom 2. Opportunisticheskie infekcii: kliniko-jepidemiologicheskie aspekty. Moscow: BINOM; 2014 (In Russ.)
  15. Shihverdiev NN, Hubulava GG, Marchenko SP, et al. The choice of an antibacterial drug for topical use in the prevention of sternal infection. Pediatr. 2017;8(2): 89–93. doi: 10.17816/PED8289-93 (In Russ.)
  16. Yakovlev SV, Protsenko DN, Shakhova TV, et al. Antibiotic Resistance in Hospital: Do we control the situation? Antibiotics and Chemotherapy. 2010;55(1–2): 50–58. (In Russ.)
  17. Antonelli A, Giani T, Coppi M, et al. Staphylococcus aureus from hospital-acquired pneumonia from an Italian nationwide survey: activity of ceftobiprole and other anti-staphylococcal agents, and molecular epidemiology of methicillin-resistant isolates. J Antimicrob Chemother. 2019;7(12):3453–3461. doi: 10.1093/jac/dkz371
  18. Becker K, Heilmann C, Peters G. Coagulase-negative staphylococci. Clin Microbiol Rev. 2014;27(4): 870–926. doi: 10.1128/CMR.00109-13
  19. Blanchard AC, Fortin E, Laferrie’re C, et al. Comparative effectiveness of linezolid versus vancomycin as definitive antibiotic therapy for heterogeneously resistant vancomycin-intermediate coagulase-negative staphylococcal central-line-associated bloodstream infections in a neonatal intensive care unit. J Antimicrob Chemother. 2017;72(6):1812–1817. doi: 10.1093/jac/dkx059
  20. Blane B., Raven K., Leek D., et al. Rapid sequencing of MRSA direct from clinical plates in a routine microbiology laboratory. J Antimicrob Chemother. 2019;74(8):2153–2156. doi: 10.1093/jac/dkz170
  21. Butin M, Martins-Simoes P, Pichon B, et al. Emergence and dissemination of a linezolid-resistant Staphylococcus capitis clone in Europe. J Antimicrob Chemother. 2017;72(4):1014–1020. doi: 10.1093/jac/dkw516
  22. Conen A, Walti L, Merlo A, et al. Characteristics and treatment outcome of cerebrospinal fluid shunt-associated infections in adults: a retrospective analysis over an 11-year period. Clin Infect Dis. 2008;47: 73–82. doi: 10.1086/588298
  23. De Oliveira D, Forde B, Kidd T, et al. Antimicrobial Resistance in ESKAPE Pathogens. Clin Microbiol Rev. 2020;33(3):1–49. doi: 10.1128/CMR.00181-19
  24. Hellmark B, Unemo M, Nilsdotter-Augustinsson A, Soderquist B. Antibiotic susceptibility among Staphylococcus epidermidis isolated from prosthetic joint infections with special focus on rifampicin and variability of the rpoB gene. Clin Microbiol Infect. 2009;15(3): 238–244. doi: 10.1111/j.1469-0691.2008.02663
  25. Humphries R, Magnanom P, Burnham C, et al. Evaluation of Surrogate Tests for the Presence of mecA-Mediated Methicillin Resistance in Staphylococcus capitis, Staphylococcus haemolyticus, Staphylococcus hominis, and Staphylococcus warneri. J Clin Microbiol. 2020;59(1): e02290–20. doi: 10.1128/JCM.02290-20
  26. Krediet T, Jones M, Janssen K, et al. Prevalence of molecular types and mecA gene carriage of coagulase-negative Staphylococci in a neonatal intensive care unit: relation to nosocomial septicemia. J Clin Microbiol. 2001;39:3376–3378. doi: 10.1128/JCM.39.9.3376-3378.2001
  27. Lakhundi S, Zhang K. Methicillin-Resistant Staphylococcus aureus: Molecular Characterization, Evolution, and Epidemiology. Clin Microbiol Rev. 2018;31(4): 1–103. doi: 10.1128/CMR.00020-18
  28. Littorin C, Hellmark B, Nilsdotter-Augustinsson Å, Söderquist B. In vitro activity of tedizolid and linezolid against Staphylococcus epidermidis isolated from prosthetic joint infections. Eur J Clin Microbiol & Infect Dis. 2017;36(9):1549–1552. doi: 10.1007/s10096-017-2966-z
  29. Naccache S, Callan K, Burnham C, et al. Evaluation of oxacillin and cefoxitin disk diffusion and microbroth dilution methods for detecting mecA-mediated β-lactam resistance in contemporary Staphylococcus epidermidis isolates. J Clin Microbiol. 2019;57(12): 1–10. doi: 10.1128/JCM.00961-19
  30. Raad I. Intravascular-catheter-related infections. Lancet. 1998;351(9106):893–898. doi: 10.1016/S0140-6736(97)10006-X
  31. Sadovskaya I, Vinogradov E, Flahaut S, et al. Extracellular carbohydrate-containing polymers of a model biofilm-producing strain Staphylococcus epidermidis. Infect Immun. 2005;73(5):3007–3017. doi: 10.1128/IAI.73.5.3007-3017.2005
  32. Tong S, Davis J, Eichenberger E, et al. Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 2015;28(3):603–661. doi: 10.1128/CMR.00134-14
  33. Watkins R, Holubar M, David M. Antimicrobial resistance in methicillin-resistant Staphylococcus aureus to newer antimicrobial agents. Antimicrob Agents Chemother. 2019;63(12): e01216–e1219. doi: 10.1128/AAC.01216-19
  34. Widerstrom M, Wistrom J, Sjostedt A, Monsen T. Coagulase-negative staphylococci: update on the molecular epidemiology and clinical presentation, with a focus on Staphylococcus epidermidis and Staphylococcus saprophyticus. Eur J Clin Microbiol & Infec. Dis. 2012;31(1):7–20. doi: 10.1007/s10096-011-1270-6

补充文件

附件文件
动作
1. JATS XML
2. 图1. 某多学科儿童医院葡萄球菌菌株对抗菌药物敏感和耐药发生率 Fig. 1. Frequency of occurrence of staphylococcal strains sensitive and resistant to antibacterial drugs in the hospital

下载 (113KB)
3. 图2. 多学科儿童医院各科室葡萄球菌耐药株和极耐药株的发生频率 Fig. 2. Occurrence of MDR and XDR staphylococcal strains in the different departments of the hospital

下载 (116KB)
4. 图3. 最常见的耐药谱是表皮葡萄球菌。Azm—阿奇霉素;Gn—庆大霉素;Ox—苯唑西林;Cip—环丙沙星;Ckt—头孢西丁 Fig. 3. Most common antimicrobial susceptibility patterns of S. epidermidis. Azm – azithromycin, Amc – amoxiclav, Gn – gentamicin, Ox – oxacillin, Cip – ciprofloxacin, Ckt – cefoxitin

下载 (75KB)
5. 图4. 金黄色葡萄球菌的耐药谱。Azm—阿奇霉素;Amc—阿莫西林;Gn—庆大霉素;Ox—苯唑西林;Cip—环丙沙星;Ckt—头孢西丁 Fig. 4. Antimicrobial patterns of S. aureus. Azm – azithromycin, Amc – amoxiclav, Gn – gentamicin, Ox – oxacillin, Cip – ciprofloxacin, Ckt – cefoxitin

下载 (93KB)
6. 图5. 溶血葡萄球菌的耐药谱。Azm—阿奇霉素;Amc—阿莫西林;Gn—庆大霉素;Ox—苯唑西林;Cip—环丙沙星;Ckt—头孢西丁 Fig. 5. Antimicrobial patterns of S. haemolyticus. Azm – azithromycin, Amc – amoxiclav, Gn – gentamicin, Ox – oxacillin, Cip – ciprofloxacin, Ckt – cefoxitin

下载 (74KB)

版权所有 © Gladin D., Khairullina A., Korolyuk A., Kozlova N., Ananyeva O., Gorbunov O., 2021

Creative Commons License
此作品已接受知识共享署名 4.0国际许可协议的许可

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 69634 от 15.03.2021 г.