Современные представления о взаимосвязи ожирения и кишечной микробиоты


Цитировать

Полный текст

Открытый доступ Открытый доступ
Доступ закрыт Доступ предоставлен
Доступ закрыт Только для подписчиков

Аннотация

Более 500 млн людей на Земле имеют избыточный вес, эта «эпидемия» охватывает все страны, включая Россию, и наблюдается как у взрослых, так и у детей. Обычно это объясняют изменением образа жизни и характера питания современного человека, но под влиянием питания меняется и состав кишечной микробиоты. Участие микрофлоры в энергетическом и жировом обмене доказано в эксперименте на гнотобионтах. Заселение гнотобионтов микрофлорой от ожиревших особей способствовало развитию ожирения, независимо от диеты. Ожирение характеризуется слабой степенью хронического воспаления в жировой ткани, источником его может быть кишечная микробиота. Липополисахариды (ЛПС)) Грам (–) кишечных бактерий через активацию TLR-4 являются главными инициаторами этого воспаления. Кишечная микробиота тучных и стройных отличается. При ожирении повышено количество клостридий и Грам (–) протеобактерий, снижено количество бактероидов и бифидобактерий. Ряд работ продемонстрировал возможность влияния пробиотиков, особенно бифидобактерий младенческих штаммов, на некоторые проявления метаболического синдрома, в частности уровень глюкозы, инсулина, холестерина.

Полный текст

Доступ закрыт

Об авторах

Елена Александровна Корниенко

ГБОУ ВПО «Санкт-Петербургский государственный педиатрический медицинский университет» Минздрава России

Email: elenkornienk@yandex.ru
д. м. н., зав. кафедрой гастроэнтерологии ФП и ДПО

Список литературы

  1. Alderberth I. Factors influencing the establishment of the intestinal microbiota in infancy // Personalized Nutrition for the diverse needs of infants and children / Ed. Bier D. M., German J. B., Lonnerdal B. Nestle Nutr. Workshop. — 2008. — Vol. 62. — P. 13–33.
  2. Backhed F., Ding H., Wang T. et al. The gut microbiota as an environmental factor that regulates fat storage // PNAS. — 2004. — Vol. 101, N 44, on line.
  3. Backhed F., Manchester J. K., Semenkovich C. F., Gordon J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice // Proc. Nat. Acad. Sci. USA. — 2007. — Vol. 104 (30). — P. 979–984.
  4. Brun P., Castagliolo I., Leo V. D. et al. Increased intestinal permeability in obese mice: new evidence in the pathogenesis of nonalcoholic steatohepatitis // Am. J. Physiol. Gastrointest. Liver Physiol. — 2007. — Vol. 292. — G. 518–525.
  5. Caesar R., Fak F., Backhed F. Effects of gut microbiota on obesity and atherosclerosis via modulation of inflammation and lipid metabolism // J. Intern. Med. — 2010. — Vol. 268. — P. 320–328.
  6. Cani P. D., Amar J., Iglesias M. A. et al. Metabolic endotoxemia initiates obesity and insulin resistance // Diabetes. — 2007. — Vol. 56 (7). — P. 1761–1772.
  7. Cani P. D., Neyrinck A. M., Fava F. et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia // Diabetologia. — 2007. — Vol. 50. — P. 2374–2383.
  8. Cani P. D., Neyrinck A. M., Malon N., Delzenne N. M. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like peptide 1 // Obes.Res. — 2005. — Vol. 13 (6). — P. 1000–1007.
  9. Cani P. D., Possemiers S., Van de Wiele T. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability // Gut. — 2009. — Vol. 58. — P. 1091–1103.
  10. Collado M. C. Effect of mother’s weight on infant’s microbiota acquisition, composition, and activity during pregnancy: a prospective follow-up study initiated in early pregnancy // Am. J. Clin. Nutr. — 2010 (92). — P. 1023–1030.
  11. Collado M. C., Isolauri E., Laitinen K. Distinct composition of gut microbiota during pregnancy in overweight and normal-weight women // Am. J. Clin.Nutr. — 2008. — Vol. 88. — P. 894–899.
  12. De Filippo C., Cavalieri D., Di Paola M. et al. Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa // PNAS, Erly Edition. — 2010, on line.
  13. Di Baise J. K., Zhang H., Crowell M. D. et al. Gut microbiota and its relationship with obesity // Mayo Clin.Proc. — 2008. — Vol. 83 (4). — P. 460–469.
  14. Donovan S. M. Promoting bifidobactera in the human infant intestine: why, how and which? // J. Ped.Gasroenterol.Nutr. — 2011. — Vol. 52 (6). — P. 648–650.
  15. Eckburg P. B., Bik E. M., Bernstein C. N. et al. Diversity of the human intestinal microbial flora // Science. — 2005. — Vol. 10, 308 (5728). — P. 1635–1638.
  16. Feuerer M. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect methabolic parameters // Nature Med. — 2009. — Vol. 15. — P. 930–939.
  17. Ghoshal S., Witta J., Zhong J. et al. Chilomicrons promote intestinal absorption of lipopolysaccharides // J. Lipid Res. — 2009. — Vol. 50. — P. 90–97.
  18. Gregor M. F., Hotamisligil G. S. Inflammatory mechanisms in obesity // Annu. Rev. Immunol. — 2011. — Vol. 29. — P. 415–445.
  19. Hehemann J. H. Transfer of carbohydrate-active enzymes from marine bacteria to Japanese gut microbiota // Nature. — 2010. — Vol. 464. — P. 908–912.
  20. Kadooka Y., Sato M., Imaizumi K. et al. regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obesetendencies in randomized controlled trial // Eur. J. Clin.Nutr. — 2010. — Vol. 64. — P. 636–643.
  21. Kahn B. B., Alquier T., Carling D. et al. AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism // Cell Metab. — 2005. — Vol. 1. — P. 15–25.
  22. Kalliomaki M., Collado M. C., Salminen S., Isolauri E. Early differences in fecal microbiota composition in children may predict overweight // Am. J. Clin.Nutr. — 2008. — P. 534–538.
  23. Kau A. L., Ahern P. P., Griffin N. W. et al. Human nutrition, the gut microbiome and the immune system // Nature. — 2011. — Vol. 474. — P. 327–336.
  24. Lee H. Y., Park J. H., Seok S. H. et al. Human originated bacteria Lactobacillus rhamnosus PL60, produce conjugated linoleic acid and show anti-obesity effects in diet-induced obese mice // Biochim. Biophys. Acta. — 2006. — Vol. 1761 (7). — P. 736–744.
  25. Ley R. E., Backhed F., Turnbaugh P. J. et al. Obesity alters gut microbial ecology // Proc. Nat. Acad. Sci. USA. — 2005. — Vol. 102 (31). — P. 11 070–11 075.
  26. Ley R. E., Turnbaugh P. J., Klein S., Gordon J. I. Microbial ecology human gut microbes associated with obesity // Nature. — 2006. — Vol. 444 (7122). — P. 1022–1023.
  27. Luoto R., Kalliomaki M., Laitinen K., Isolauri E. The impact of perinatal probiotic intervention on the development of overweight and obesity: follow-up study from birth to 10 years // Int. J. Obes. — 2010. — Vol. 16, on line.
  28. Martin F. P. J., Wang Y., Srenger N. et al. Probiotic modulation of symbiotic gut microbial-host metabolic interaction in a humanized microbiome mouse model // Mol. Syst. Biol. — 2008. — Vol. 4. — P. 157.
  29. Muegge B. Diet drives convergence in gut microbiome functions across mammalian phylogeny and within humans // Science. — 2011. — Vol. 332. — P. 970–974.
  30. Portugal L., Goncalves J., Fernandes L. et al. Effect of Lactobacillus delbrueckii on cholesterol metabolism in germ-free mice and on atherogenesis in apolipoprotein E knock-out mice // Braz. J. Med. Biol. Res. — 2006. — Vol. 39. — P. 629–635.
  31. Qin J., Li R., Raes J. et al. A human gut microbial gene catalogue established by metagenomic sequencing // Nature. — 2010. — Vol. 464/4. — P. 59–67.
  32. Rault-Nania M., Gueux E., Demougeot C. et al. Inulin attenuates atherosclerosis in apolipoprotein E-deficient mice // British J. Nutr. — 2006. — Vol. 96. — P. 840–844.
  33. Reigstad C. S., Lunden G. O., Felin J., Backhed F. Regulation of serum amyloid A3 (SAA3) in mouse colonic epithelium and adipose tissue by the intestinal microbiota // PloS ONE. — 2009. — Vol. 4, e5842.
  34. Reinhardt C., Reigstad C. S., Backhed F. Intestinal microbiota during infancy and its implications for obesity // J. Ped. Gastroenterol. Nutrition. — 2009. — Vol. 48. — P. 249–256.
  35. Saberi M., Woods N. B., de Luca C. et al. Hematopoetic cell-specific deletion of toll-like receptor 4 ameliorates hepatic and adipose tissue insulin resistance in high-fat-fed mice // Cell Metab. — 2009. — Vol. 10. — P. 419–429.
  36. Samuel B. S., Gordon J. I. A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism // Proc. Nat. Acad. Sci. USA. — 2006. — Vol. 103 (26). — P. 10 011–10 016.
  37. Schwiertz A., Taras D., Schafer K. et al. Microbiota and SCFA in lean and overweight healthy subjects // Obesity. — 2010. — Vol. 18 (1). — P. 190–195.
  38. Sharma R., Young C., Neu J. Molecular modulation of intestinal epithelial barrier: contribution of microbiota // J. Biomed. Biotech. — 2010. — Vol. 10., 1155/305879, on line.
  39. Shi H., Kokoeva M. V., Inouye K. et al. TLR4 links innate immunity and fatty acid-induced insulin resistance // J. Clin.Invest. — 2006. — Vol. 116. — P. 3015–3025.
  40. Sonnenburg J. L., Chen C. T., Gordon J. I. Genomic and metabolic studies of the impact of probiotics on a model gut sympiont and host // PloS Biol. — 2006. — Vol. 4 (12); e413.doi:10.1371, on line.
  41. Turnbaugh P. J., Ley R. E., Mahowald M. A. et al. An obesity-associated gut microbiome with increased capacity for energy harvest // Nature. — 2006. — Vol. 444 (7122). — P. 1111–1119.
  42. Wright J. D., Kennedy-Stephenson J., Wang C. Y. Trends in intake of energy and macronutrients — United States, 1971–2000 // Morb. Mortal. Wkly Rep. — 2004. — Vol. 53. — P. 80–82.
  43. Wright S. D., Ramos R. A., Tobias P. S. et al. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein // Science. — 1990. — Vol. 249. — P. 1431–1433.
  44. Xu J., Gordon J. I. Honor thy symbionts // Proc. Nat. Acad. Sci. USA. — 2003. — Vol. 100 (18). — P. 10 452–10 459.

Дополнительные файлы

Доп. файлы
Действие
1. JATS XML

© Корниенко Е.А., 2013

Creative Commons License
Эта статья доступна по лицензии Creative Commons Attribution 4.0 International License.

СМИ зарегистрировано Федеральной службой по надзору в сфере связи, информационных технологий и массовых коммуникаций (Роскомнадзор).
Регистрационный номер и дата принятия решения о регистрации СМИ: серия ПИ № ФС 77 - 69634 от 15.03.2021 г.